
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Learning to Compile Programs to Neural Networks

Anonymous Authors1

Abstract
A neural surrogate is a neural network that mim-
ics the behavior of a program. Neural surrogates
of programs have been used to automatically
tune program inputs, adapt programs to new
settings, and accelerate computations. Neural
surrogates have traditionally been developed by
training on input-output examples for a single
program. Language models present another
approach wherein a model is trained on a single,
large dataset then directly consumes program
text, to act as a neural surrogate of the program.
Having the language model as both the neural
surrogate generator and the neural surrogate,
however, poses a tradeoff of limited accuracy
or excessive resource consumption. We present
neural surrogate compilation, a technique
for producing neural surrogates directly from
program text without coupling neural surrogate
generation and execution. We implement neural
surrogate compilers using hypernetworks trained
on a dataset of C programs and find they produce
neural surrogates that are 2.56-5.51× as data-
efficient and train in 1.52-3.34× fewer epochs
than neural surrogates trained from scratch.

1. Introduction
A neural surrogate is a neural network that models a
subset of the observable behavior of a program (Renda
et al., 2021). Neural surrogates of programs have been
used to automatically configure image signal processing
units and CPU simulators (Tseng et al., 2019; Renda et al.,
2020), improve the accuracy of manufacturing and physics
simulations (Tercan et al., 2018; Kustowski et al., 2020),
accelerate the computer architecture design process (Ïpek
et al., 2006), and accelerate computations in signal
processing, robotics, 3D games, compression, machine
learning, and image processing (Esmaeilzadeh et al., 2012).

1Anonymous Institution, Anonymous City, Anonymous
Region, Anonymous Country. Correspondence to: Anonymous
Author <anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Neural Surrogate Training. The research community
has developed a variety of techniques to train neural surro-
gates. The traditional approach is to train a neural surrogate
for a single program by collecting and curating a dataset of
input-output pairs and training a neural network to predict
the program output given the input (Renda et al., 2021).

Another point in the spectrum is to amortize the cost of
training neural surrogates by training a language model
to directly consume the text of a program and predict the
program’s output for a given input (Zaremba & Sutskever,
2015; Nye et al., 2021; Gu et al., 2024). A key benefit of
this approach when compared to the traditional approach is
that creating this dataset need only be done once, thereby en-
abling the creation of a neural surrogate for a given program
without the need to curate a dataset of program-specific,
input-output pairs as is required by the traditional approach.

However, these language model based approaches neces-
sarily use the same model to process the program text as is
used to predict the program output, and accurate prediction
may require multiple forward passes (e.g., chain-of-thought
reasoning) (Nye et al., 2021; Wei et al., 2022). These
limitations pose challenges for successfully using such a
model as a neural surrogate, as small models may not be
able to capture complex programs (Zaremba & Sutskever,
2015) while large models (OpenAI et al., 2023) may not
be able to execute in the resource-constrained environments
where neural surrogates have been used (Esmaeilzadeh
et al., 2012; Mendis, 2020; Munk et al., 2022).

Our Approach: Neural Surrogate Compilation. To
maintain the benefits of language model based approaches
while bypassing the above limitations, we propose neural
surrogate compilation. A neural surrogate compiler is a sys-
tem, specialized to a given neural surrogate architecture, that
accepts program text as input and produces an initial neural
surrogate of the program. This initial neural surrogate can
vary in behavioral quality, ranging from closely matching
the behavior of the input program to only approximating the
behavior of the program on a few inputs. We demonstrate
in this work that this initial neural surrogate can be more
quickly finetuned – as measured in both sample complexity
and training time – to closely mimic the behavior of the
program when compared to the traditional approach of
training a neural surrogate from a random initialization.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Learning to Compile Programs to Neural Networks

Compilation

Create Initialization From
Program Text

Train Until Desired Error
Is Achieved

A
Training

Use Neural Surrogate in
Place of Original Program

Deployment

Collect Training
Data

B C D

Standard Neural Surrogate Development

Figure 1: Neural surrogate development with neural surrogate compilation

[CLS]

Input Program1

BERT
Encoder

Parameter
Head

RegressingEmbedding

float

…

…

W1

W2

W3

b1

b2

b3

 void fft(float x) {
 return sin(-2*PI*x);
 }

A Tokenizing B C ParameterizingD

Surrogate

0.59

Linear
Layer
σ

Linear
Layer
σ

Linear
Layer

0.52

ExecutingE

Tokens2 Embedding3 Surrogate
Parameters4

Program Input5

Program Output6

x

(

Figure 2: System diagram describing the HYBERTNET architecture, comprising five phases: (A) tokenizing an input
program, (B) embedding the program using a BERT, (C) regressing the embeddings to a parameter weight vector using
a parameter head, (D) parameterizing a neural network using the parameter weight vector, and (E) executing the neural
network surrogate.

Contributions. To implement a neural surrogate com-
piler, we adapt the BERT architecture (Turc et al., 2019) into
a hypernetwork. A hypernetwork is a neural network that
produces the parameters of another neural network (Ha et al.,
2017). We name the resulting architecture HYBERTNET.

To train HYBERTNETs, we develop EXESTACK, a
dataset of executable C programs collected from The
Stack (Kocetkov et al., 2022), a large corpus of source
code. We then evaluate neural surrogates initialized via
HYBERTNET on EXESTACK and PARROTBENCHSHORT,
the latter being a set of benchmarks from prior work in
approximate computing (Esmaeilzadeh et al., 2012).

Our technique produces neural surrogates that achieve
2.56-5.51× lower error than neural surrogates trained from
scratch, with the same amount of data, and achieve a target
error with 1.52-3.34× fewer epochs than neural surrogates
trained from scratch.

2. Neural Surrogate Compilation
A neural surrogate is a neural network that models a subset
of the observable behavior of a program. The typical
strategy to train a neural surrogate is through supervised
learning of a neural network with curated dataset of
input-output pairs of the program (Renda et al., 2021).

2.1. The Neural Surrogate Training Problem

We first formalize the problem of training a neural surrogate.
We assume we are given a program text p : P that denotes
a function JpK : Ip → Op,1 where Ip is the type of values
p accepts as input and Op is the type of values p produces
as output. We also assume a target neural surrogate
architecture description a : A, where A = Rd → Ip → Op
is the space of neural network architectures, which takes a
set of parameters θ : Rd and produces a surrogate function
from Ip to Op. The goal is to find a set of parameters
θ : Rd such that the neural surrogate f : Ip → Op defined
by f(i) = a(θ)(i) has low approximation error:

∀i : Ip. f(i) ≈ JpK(i)

To measure the quality of a surrogate we use a loss function
` : Op ×Op → R≥ that measures the difference between
the output of the program and the output of the surrogate.
We measure the expected loss over a distribution of inputs:

Ei∼Ip [`(f(i), JpK(i))]

A challenge in training neural surrogates is that the error
of a surrogate depends on the budget dedicated to collect-
ing training data (input-output pairs of the program) and

1 J·K : P → (Ip → Op) is notation used in programming
language theory to refer to the function a program implements.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Learning to Compile Programs to Neural Networks

the number of epochs used to train the surrogate. We
formalize these costs by defining a training procedure
ta : P ×R≥ ×N≥ → Rd for a given surrogate architecture
a as a random function that takes program text p, a training
data budget b : R≥, and training time budget n : R≥ and
produces a set of parameters θ : Rd for the surrogate.

We then define the efficient surrogate training problem
as, for a given program p, architecture a, sample budget
b, training time budget n, and loss function `, finding a
training procedure ta that minimizes the expected loss of
the resulting surrogate:

argmin
ta

Eθ∼ta(p,b,n)
[
Ei∼Ip [`(a(θ)(i), JpK(i))]

]
The standard approach to training a neural surrogate is
to randomly initialize the parameters of the surrogate
and then use a gradient-based optimization algorithm to
minimize the loss against a dataset of input-output pairs of
the program (Renda et al., 2021).

2.2. Neural Surrogate Compilation

A neural surrogate compiler is a system that, given the
source code of a program, produces a neural surrogate
of the program, with the neural surrogate architecture
fixed in advance. We use neural surrogate compilers as
better solutions to the efficient surrogate training problem
than traditional neural surrogate development, as they can
produce an initialization for a neural surrogate that requires
less data and fewer epochs to converge to a target error than
random initialization.

Figure 1 illustrates how a neural surrogate compiler
augments the traditional neural surrogate development
workflow. In a traditional neural surrogate development
workflow, one collects training data (B), trains the neural
surrogate until its error meets the desired threshold (C),
and then uses it in place of the original program (D).
Neural surrogate compilation (A) introduces a new, initial
step in the neural surrogate compliation workflow in which
a neural surrogate compiler maps the program text to a
neural network initialization for use in the the training of
the neural surrogate.

The Neural Surrogate Compiler Problem. We formal-
ize the development of a neural surrogate compiler as an
optimization problem. The goal is to implement a system
φa ∈ P → Rd that accepts program text p and produces
neural network parameters θ for architecture description
a such that the surrogate f = a(φa(p)) needs as little data
as possible to reach low approximation error. We use the
approximation error of the surrogate with no training as
a proxy for the approximation error of the surrogate with

additional training. The optimization problem is then:

argmin
φa∈P→Rd

Ep∼P [Ei∼Ip [`(a(φa(p))(i), JpK(i))]]

3. HYBERTNET

A HYBERTNET is an implementation of a neural surrogate
compiler using hypernetworks. We first explain the
architecture, then we explain how to train it.

3.1. Architecture

Figure 2 presents the architecture of a HYBERTNET.

A HYBERTNET accepts program text as input and
produces parameters for a neural surrogate architecture
a : Rd → I → O that is fixed in advance. A consequence
of this design is that, to apply a given HYBERTNET
to arbitrary programs, one requires a methodology for
interpreting programs with potentially different type
signatures as functions from I to O.

A First, HYBERTNET tokenizes an input program (1),
resulting in a sequence of tokens (2) that includes a dis-
tinguished classification token [CLS], as is common in
BERT-based architectures.

B HYBERTNET then uses a BERT encoder (Devlin et al.,
2019) to embed the sequence of tokens, resulting in an em-
bedding per token. The output of this step is the embedding
of the classification token (3); HYBERTNET discards the
embeddings of the other tokens.

C Next, HYBERTNET uses a linear layer to map the clas-
sification token embedding to a neural surrogate parameter
vector (4).

D Then, HYBERTNET interprets the vector of neural
surrogate parameters as the weights and biases of a given
neural surrogate architecture. The output of this step is a
neural surrogate of the input program.

E Finally, HYBERTNET executes the neural surrogate
with the interpreted parameters on a program input (5) to
produce a prediction of the program output (6).

3.2. Training

Training a HYBERTNET requires a dataset of programs
and input-output pairs for each program. Note that this
dataset is not considered as part of the budget in the efficient
surrogate training problem, since it is amortized over all
programs the HYBERTNET is used to compile.

We detail our collection of such a dataset, EXESTACK, in
Section 4. Since we would like to evaluate the generalization
capabilities on both unseen programs and/or unseen program

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Learning to Compile Programs to Neural Networks

inputs, we do not use a simple train/test split; we use a train-
program/test-program split and a train-input/test-input split.

With such a dataset in hand, a batch of the forward pass of
training proceeds by selecting a batch of programs and input-
output pairs for those programs, generating neural surrogate
parameters for each program, then executing the correspond-
ing neural surrogate with the corresponding inputs.

During the forward pass, this neural network interprets
the parameters according to the target neural surrogate
architecture and processes the inputs using these parameters.
The loss is calculated as the mean squared error between the
neural surrogates’ predicted outputs and the true outputs.

Backpropagation proceeds as usual, except that one does not
update the parameters of the neural surrogates, since each
generated neural surrogate is ephemeral. Instead, backprop-
gation only updates the parameters of the HYBERTNET.
Appendix B presents additional training details.

4. EXESTACK

Learning a neural surogate compiler requires a dataset of
programs and input-output examples describing the behav-
ior of each program (see Section 3.2). To fill this need, we
developed EXESTACK, a dataset of numerical, executable,
deterministic C programs and corresponding input-output
examples. EXESTACK is based on The Stack, a dataset of 3
TB of permissively licensed source code written in various
programming languages scraped from GitHub (Kocetkov
et al., 2022). The following filters produce a dataset of
numerical, executable, deterministic C programs, along
with a set of input-output examples for each program.

Preprocessing. We pull the functions in EXESTACK from
files that may contain preprocessor directives, which may af-
fect the ability for these functions to be executed in isolation,
if left unexpanded. We run the C preprocessor on source
files until no more lines begin with “#”, we have run it 2
times, or an invocation fails. Once one of these conditions
is met, we pass the file to the next filter in the pipeline.

Deduplication. We use a whitespace-invariant tokenizer
to remove duplicate tokenized programs.

Filtering for Pointer-Free Numeric Functions. To filter
for numeric functions in C programs, we only include C
functions that use exclusively float and double data
types in the function signature. Due to the possiblity of
dynamically sized inputs in the presence of pointers and
the ambiguity of whether a pointer represents an input or
output, we do not allow pointer types. Consequently, we
also do not allow void as an output type. If checking a
file for the above conditions takes longer than 8 seconds,
we discard it. Note that these filters still allow integral and

pointer data types to be used within the function.

Filtering for Executable Functions and Collecting
Outputs. To simultaneously check for executability and
collect outputs from a function, we first generate 2048
sets of inputs by sampling from the uniform distribution
U(−1, 1) and use the same sets of inputs for all programs.
We embed these inputs in a C program that includes
the function source, as well as an execution harness for
collecting outputs. The harness is compiled with the C
standard math library included, since many numerical
functions in C make use of this library. If there are any
errors during compilation or execution of a function,
we discard the function. We provide an example of the
execution harness instantiated for a function in Appendix A.

To target a fixed neural surrogate architecture, a method-
ology is required for interpreting functions of varying
type signatures as a single, fixed type signature. For a
neural surrogate architecture with m inputs and n outputs,
we distinguish the first m arguments of a function as the
input for the neural surrogate, and we initialize all other
arguments to the constant 1.0. When a function has more
than n outputs, we only collect the first n outputs. When
a function has fewer than n outputs, we pad the function
outputs with the constant 0.0.

Filtering for Deterministic Functions. Since a neural
surrogate is often a deterministic function of its inputs
and weights, we filter nondeterministic functions from our
dataset. We check for determinism by running a function
5 times on the same inputs, all sampled from U(−1, 1), and
observing whether the output differs on any execution.

5. Evaluation
We answer the following research questions.

RQ 1: On average, does a neural surrogate initialized by
a HYBERTNET converge to a lower test error than a neural
surrogate initialized randomly, for a fixed training set size?

RQ 2: On average, does a neural surrogate initialized by
a HYBERTNET converge to a target test error in fewer
epochs than a neural surrogate initialized randomly?

Our results demonstrate that HYBERTNETs lead to
improvements in data efficiency (Section 5.2) and training
time (Section 5.3).

5.1. Methodology

To develop and evaluate HYBERTNETs, we choose a
BERT architecture and a neural surrogate architecture,
produce datasets HYBERTNETs can be trained and
evaluated on, and introduce a baseline initialization method
to compare against.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Learning to Compile Programs to Neural Networks

Benchmark Description Train Inputs Test Inputs #Inputs #Outputs

fft Radix-2 Cooley-Tukey
fast Fourier transform

32,768 random floating point
numbers

2,048 random float-
ing point numbers

1 2

invk2j Inverse kinematics for
2-joint arm

10,000 random (x, y)
coordinates

10,000 random (x, y)
coordinates

2 2

kmeans K-means clustering 50,000 random (r, g, b) values 220x200 color image 6 1

sobel Sobel edge detector One 512x512 color image 220x200 color image 9 1

Table 1: The programs from PARROTBENCH we include in PARROTBENCHSHORT (Esmaeilzadeh et al., 2012).

5.1.1. HYBERTNET ARCHITECTURE

As our base BERT architecture, we use BERT-Tiny (Turc
et al., 2019).

We adopt one of the neural surrogate architectures used
for the Parrot transformation by Esmaeilzadeh et al. (2012).
This neural surrogate architecture is a multilayer perceptron
consisting of a single input, a hidden layer of 4 neurons,
another hidden layer of 4 neurons, and 2 outputs. The
activation function is sigmoid.

5.1.2. DATASETS

We train HYBERTNETs on programs from EXESTACK
variant. We test the effectiveness of HYBERTNETs
on test programs from bothEXESTACK and PARROT-
BENCHSHORT, a subset of the suite of benchmarks
introduced by Esmaeilzadeh et al. (2012) (Table 1).

EXESTACK For HYBERTNETs We applied additional
filters to EXESTACK to produce a variant that is compatible
with HYBERTNETs.

• Filtering Long Programs. Since BERT-Tiny has a max-
imum context length of 512 tokens, we remove functions
with more than 512 tokens. We strip comments from all
programs to allow more programs to fit within the context.

• Filtering Large Outputs. Large or NaN outputs can
lead to training instability for neural networks, so we
additionally remove functions with any outputs with an
absolute magnitude of 10 or larger or a NaN value.

In total, we are left with 23,064 programs in this EXESTACK
variant, each with 2048 input-output examples.

From the full set of programs, we created a train set and test
set. The train set consists of 80% of the full set of programs
and uses 50% of the input-output examples of each program.
The test set consists of 1,000 programs selected uniformly
at random from the 20% of programs that we withheld from
the train set. We use all of 1,024 intput-output examples
of each program to form the test set. We do not use the
remainder the withheld programs due to the extensive cost
of our evaluation methodology for programs in the test set.

Parrot Benchmarks. We refer to the original benchmark
suite of Esmaeilzadeh et al. as PARROTBENCH. Table 1
shows the programs we include in PARROTBENCHSHORT,
including descriptions of the computations and datasets.

Due to methodological choices in EXESTACK and ar-
chitectural choices for HYBERTNETs, we omit some
PARROTBENCH benchmarks from PARROTBENCHSHORT
and modify others. The benchmarks jmeint and jpeg
in PARROTBENCH are significantly longer than the context
length of a BERT-Tiny (512 tokens), so we do not include
them in our evaluation.

HYBERTNETs do not apply directly to fft and invk2j.
Both benchmarks use pointer arguments to store the
two outputs of the function. To make these functions
pointer-free and thus compatible with our HYBERTNETs,
we split each into two functions, each function computing
one component of the outputs. Additionally, the sobel
benchmark uses pointer inputs, so we rewrite it to only use
scalar inputs. Finally, the kmeans benchmark uses custom
structs to pass arguments, so we rewrite the benchmark
to desugar these structs into their scalar components. The
modified code for each benchmark is listed in Appendix C.

5.1.3. DATASET-TAILORED INITIALIZATION

As a program-text-agnostic baseline, we develop dataset-
tailored neural surrogate initializations (DTI). That is,
we train a single neural surrogate on all input-output
examples of EXESTACK, ignoring program text. We use the
resulting neural surrogate as an initialization for finetuning.
If that initialization performs worse than HYBERTNET
initializations, then we gain confidence hypernetworks were
useful in developing an effective neural surrogate compiler,
rather than just learning a dataset-tailored initialization.

To produce dataset-tailored neural surrogate initializations,
we train a single neural surrogate—using the same neural
surrogate architecture as the HYBERTNETs in this
evaluation—on all input-output examples from training
programs and training inputs in EXESTACK. We train the
neural surrogate for 1,200 epochs, with a learning rate

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Learning to Compile Programs to Neural Networks

Dataset Size Dataset-Tailored Init HyBERTNet

0% 2.71× 33.17×
0.1% 0.35× 5.71×
1% 0.01× 1.37×
10% 0.07× 4.31×
100% 0.08× 4.55×

Statistic Dataset-Tailored Init HyBERTNet

GM 0.14× 5.51×

0th 1.53 · 10−9× 3.58 · 10−7×
25th 0.02× 1.05×
50th 0.25× 5.78×
75th 2.18× 33.15×
100th 1.80 · 103× 8.56 · 106×

MPI 66th 25th

Figure 3: Geometric mean test-input loss improvement over random initialization on EXESTACK test programs, grouped
by dataset sizes (left), as well as test-input loss improvements over all programs and dataset sizes (right). The table on
the right reports overall geometric mean improvements, percentiles from 0th to 100th, and the minimum percentile at which
an initialization method improves over random initialization.

of 0.01. We perform 3 trials with varying random seeds,
producing 3 dataset-tailored surrogate initializations.

5.1.4. QUANTIFYING IMPROVEMENTS

We define the improvement for a given configuration (con-
sisting of an initialization, program, and budget) as the ratio
of the arithmetic mean of the test losses in that configuration
to the arithmetic mean of the test losses of that program and
budget when initialized randomly. For each initialization
method, we report the geometric mean of the improvements
grouped by program, grouped by budget, and overall.

5.2. HYBERTNET Improvements To Data Efficiency

To assess whether HYBERTNETs improve data efficiency,
we use HYBERTNETs to initialize neural surrogates,
finetune on subsets of training data of various sizes, then
compare the results to those of other initialization methods.

5.2.1. METHODOLOGY

We now describe the configurations we sweep over and the
methodology we use to finetune surrogates.

Experiment Configurations. We sweep over a number
of configurations in this experiment, each consisting of a
program, a dataset size, and an initialization method (e.g.,
a HYBERTNET).

Each dataset size specifies the percentage of the training
data to train neural surrogates on. We sweep over the
following percentages: {0%, 0.1%, 1%, 10%, 100%}.

Given a configuration consisting of a program, dataset
size percentage c, and an initialization method, we select
a random subset Dsub of the training data Dtrain of size
c|Dtrain|. We use an 80:20 split to divide Dsub into train and
validation sets Dsub train and Dsub val. We sample 9 different

subsets of this size and use a different training seed for each
subset, yielding 9 trials total.

Finetuning. For each trial, we initialize a neural surrogate
according to the initialization method. We then train on
Dsub train for 5,000 epochs using the Adam optimizer with
no weight decay and a learning rate of 0.012. The final test
loss we report for a trial is the test error at the epoch closest
to the epoch with the lowest validation error.3 When the
dataset size is 0, we use the test loss at the final epoch.

5.2.2. RESULTS

Figures 3 and 4 show the results of finetuning for a
sample of 1,000 EXESTACK test programs and PARROT-
BENCHSHORT, respectively, using DTI to refer to dataset-
tailored initializations and HBN to refer to HYBERTNET
initializations. More data is available in Appendix D.

EXESTACK Test Programs. The improvement due to
HYBERTNETs on EXESTACK test programs is most
pronounced in the zero-shot regime, where the improvement
is 33.17× over random initialization. The zero-shot regime
is also the only regime where dataset-tailored initializations
show an improvement, achieving 2.71× better test loss than
random initializations. The worst performance for both
HYBERTNETs and dataset-tailored initializations is in
the middle of the dataset sizes we evaluated, at a dataset
size of 0.1. Here, HYBERTNETs achieved only a 1.37×
improvement and dataset-tailored initializations achieved
only a 0.01× improvement (i.e., a 100× degradation).

Over all sampled EXESTACK programs, HYBERTNETs
achieve a data efficiency of 5.5× over randomly initailized

2 The number of epochs and learning rate are in accordance
with Esmaeilzadeh et al. (2012).

3We only compute test error before training, after every 3
epochs of training, and after training.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Learning to Compile Programs to Neural Networks

Program DTI MAML HBN

fft (0) 0.05× 0.86× 2.89×
fft (1) 0.21× 1.10× 2.66×
invk2j (0) 0.19× 0.98× 1.13×
invk2j (1) 2.83× 0.99× 16.07×
kmeans 0.54× 1.04× 1.05×
sobel 0.70× 1.00× 1.89×

Dataset Size DTI MAML HBN

0% 1.45× 1.00× 1.53×
0.1% 0.16× 0.97× 1.17×
1% 0.28× 1.03× 3.22×
10% 0.23× 1.13× 3.78×
100% 0.42× 0.86× 5.04×

Statistic DTI MAML HBN

GM 0.36× 0.99× 2.56×

0th 3.87 · 10−5× 0.10× 0.07×
25th 0.19× 0.92× 1.01×
50th 0.73× 1.00× 1.65×
75th 1.69× 1.13× 4.52×
100th 21.19× 5.78× 787.50×

MPI 65th 55th 25th

Figure 4: Test-input loss improvement over random initialization on PARROTBENCHSHORT, grouped by dataset sizes
(left) and by programs (middle), as well as test-input loss improvements over all programs, dataset sizes, and train trials
(right). DTI refers to dataset-tailored initializations and HBN to HYBERTNET. The suffixes (0) and (1) denote the first and
second outputs of a program, respectively. The rightmost table reports overall geometric mean improvements, percentiles
from 0th to 100th, and the minimum percentile at which an initialization method improves over random initialization.

neural surrogates, while dataset-tailored neural surrogate
initializations achieve a data efficiency of 0.14×, worsening
performance. For both initialization methods, the minimums
and maximums are extreme, with HYBERTNETs having a
minimum and maximum of 3.58 · 10−7× and 8.56 · 106×,
respectively, while dataset-tailored initializations have a
minimum and maximum of 1.53 · 10−9× and 1.80 · 103×,
respectively. As low as the 25th percentile, HYBERTNETs
improve over random initialization by 1.05×.

PARROTBENCHSHORT Programs. HYBERTNETs
improve data efficiency on each PARROTBENCHSHORT
program, with the smallest improvement on kmeans
(1.05×) and the largest improvement on the second
component of invk2j (16.07×). The reasons for the
disparity between these programs is unclear, with both
having a comparable length (kmeans being 122 tokens
and invk2j (1) being 84 tokens) and one transcendental
function (kmeans using sqrt and invk2j (1) using
acos). Dataset-tailored initializations only improve on
invk2j (1), with an improvement of 2.83×.

The improvement due to HYBERTNETs is most pro-
nounced at a dataset size of 100%, unlike the EXESTACK
results, with HYBERTNETs achieving a 5.04× improve-
ment. Dataset-tailored initializations, however, perform
best in the zero-shot regime, with a 1.45× improvement.

The worst performance for both initialization methods
is again in the middle, at a dataset size of 0.1%, with
HYBERTNETs achieving only a 1.1× improvement and
dataset-tailored initializations achieving only 0.16×.

Over all PARROTBENCHSHORT programs, HYBERTNETs
achieve a data efficiency of 2.56× over randomly initialized
neural surrogates, while dataset-tailored neural surrogate
initializations achieve a data efficiency of 0.36×, worsening
performance. The minimum and maximum for HYBERT-
NET improvements (0.07× and 787.50×, respectively) only
span 4 orders of magnitude, unlike those for EXESTACK.
However, dataset-tailored initializations span 7 orders
of magnitude, with a minimum of 3.87 · 10−5× and a
maximum of 21.19×. As low as the 25th percentile, HY-
BERTNETs improve over random initialization by 1.01×.

Since HYBERTNETs improve data efficiency over
random initialization on both EXESTACK and PARROT-
BENCHSHORT, we answer yes to RQ 1.

5.3. HYBERTNET Improvements To Training Time

To assess whether HYBERTNETs improve training time,
we sweep over initialization methods and finetune initialized
surrogates until they reach a target test error. We first detail
the methodology of this experiment, then present results.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Learning to Compile Programs to Neural Networks

Statistic DTI HBN

GM 0.64× 3.34×
0th 0.04× 0.03×
25th 0.68× 0.97×
50th 0.86× 2.30×
75th 0.88× 8.46×
100th 15.08× 1.66 · 103×
MPI 92nd 27th

(a) Geometric mean and percentile
improvements to training time over
random initialization on a sample of
1,000 EXESTACK test programs. MPI
is the minimum percentile at which
an initialization method improves over
random initialization.

Program DTI HBN

fft (0) 0.46× 3.45×
fft (1) 1.02× 3.76×
invk2j (0) 0.81× 1.12×
invk2j (1) 0.58× 1.03×
kmeans 0.24× 0.86×
sobel 0.61× 0.96×

Statistic DTI HBN

GM 0.57× 1.52×
0th 0.13× 0.65×
25th 0.41× 0.94×
50th 0.58× 1.21×
75th 0.76× 1.64×
100th 6.39× 9.88×
MPI 92nd 37th

(b) Geometric mean training time improvements over random initialization on PAR-
ROTBENCHSHORT, grouped by programs (left), as well as training time improve-
ments over all programs and training trials (right). The table on the right includes
geometric mean improvement, percentiles from 0th to 100th, and the minimum
percentile at which an initialization method improves over random initialization.

Figure 5: Training time improvements on EXESTACK test programs (left) and PARROTBENCHSHORT programs (right).
DTI refers to dataset-tailored initializations and HBN refers to HYBERTNET initializations.

5.3.1. METHODOLOGY

We now describe how we set a target error to use as a
stopping condition and the configurations we sweep over.

Setting a Target Error. We set a target test error for each
program by training 3 randomly initialized surrogates for
5,000 epochs with learning rate 0.01. The average final test
error is the target test error for all initialization methods.

Experiment Configurations. We sweep over a number
of configurations in this experiment, each consisting of a
program and an initialization method.

Given a program and initialization method, we produce a
neural surrogate initialization. We then train the initialized
neural surrogate on the training input set until it reaches
the target test error. We repeat the process above 3 times
with different random seeds.4

5.3.2. RESULTS

The results are summarized in Table 5a and Figure 5b for
EXESTACK test and PARROTBENCHSHORT, respectively.
Additional data is available in Appendix E.

EXESTACK Test Programs. Over a sample of EX-
ESTACK test programs, HYBERTNETs produce neural
surrogates that train 3.34× faster than randomly initialized
surrogates, whereas dataset-tailored initializations train
0.64× faster (i.e., 1.56× slower). HYBERTNETs see
improvements of 0.97× as low as the 25th percentile,
whereas dataset-tailored initializations see improvements

4 For the dataset-tailored surrogate and HYBERTNET
initializations, this just changes the training data order.

of at most 0.88× up to the 75th percentile.

PARROTBENCHSHORT Programs. Over PARROT-
BENCHSHORT programs, HYBERTNETs range between
improvements of 0.86× on kmeans to 3.76× on fft
(1), whereas dataset-tailored initializations range between
improvements of 0.24× on kmeans to 1.02× on fft(1).
The worst HYBERTNET performance for data efficiency
was also kmeans, suggesting this benchmark is difficult
for HYBERTNETs to target.

Averaged over all PARROTBENCHSHORT programs,
HYBERTNETs achieve a 1.52× training time improvement
over random initialization, and dataset-tailored initializa-
tions achieve a 0.57× improvement. The worst trial over
all HYBERTNETs achieved a 0.65× improvement and the
best trial achieved a 9.88× improvement. The worst trial
over all dataset-tailored initializations achieved a 0.13× im-
provement and the best trial achieved a 6.39× improvement.

Since HYBERTNETs improve training time over
random initialization on both EXESTACK and PARROT-
BENCHSHORT, we answer yes to RQ 2.

6. Related Work
There are bodies of work on both neural surrogates of
programs and meta-learning. Our work draws on both fields
and takes inspiration from compilers.

Hypernetworks. Hypernetworks were first proposed by
Ha et al. and achieve state-of-the-art results on sequence
modeling tasks (Ha et al., 2017). More recent work by
Jin et al. proposes a system, N3, that adapts Transformers
to function as hypernetworks that condition on text for

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Learning to Compile Programs to Neural Networks

few-shot learning on image classification tasks (2020).

Model-Agnostic Meta-Learning. A notable approach
to few-shot learning that does not use hypernetworks
is model-agnostic meta-learning (MAML). MAML is a
framework for developing neural network initializations
that can be finetuned to new tasks with a small amount of
data and a small number of SGD steps (Finn et al., 2017).
Some authors have noted, however, that MAML couples the
task space complexity to the complexity of the individual
tasks (Zhmoginov et al., 2022), making the parameter space
a bottleneck as the task space grows. Our technique does
not suffer from this issue because the hypernetwork can be
larger than the generated neural surrogate.

7. Conclusion
In this paper, we presented the concept of a neural surrogate
compiler and demonstrated how a neural surrogate compiler
can be implemented with HYBERTNETs. We provided
a dataset, EXESTACK, that one can use to learn neural
surrogate compilers. We demonstrated the effectiveness
of HYBERTNETs on EXESTACK programs and PARROT-
BENCHSHORT, a suite of numerical benchmarks spanning
various application domains. Specifically, we showed
HYBERTNETs achieve a loss 2.56-5.51× lower than ran-
domly initialized neural surrogates and train in 1.52-3.34×
fewer epochs than randomly initialized neural surrogates.

The key insight of our work is a programming language
can condition the space of neural network initializations.
In the limit, a neural surrogate compiler could produce ini-
tializations requiring no training to achieve low error. More
broadly, neural surrogate compilers could be used to encode
programmatically specified behaviors in neural networks,
potentially accelerating training for more general tasks.

8. Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.

Bert: Pre-training of deep bidirectional transformers for
language understanding. In North American Chapter of
the Association for Computational Linguistics, 2019.

Esmaeilzadeh, H., Sampson, A., Ceze, L., and Burger, D.
Neural acceleration for general-purpose approximate
programs. In IEEE/ACM International Symposium on
Microarchitecture, 2012.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic
meta-learning for fast adaptation of deep networks.
In Proceedings of the 34th International Conference
on Machine Learning - Volume 70, ICML’17, pp.
1126–1135. JMLR.org, 2017.

Gu, A., Rozière, B., Leather, H., Solar-Lezama, A.,
Synnaeve, G., and Wang, S. I. Cruxeval: A benchmark
for code reasoning, understanding and execution, 2024.

Ha, D., Dai, A. M., and Le, Q. V. Hypernetworks. In Inter-
national Conference on Learning Representations, 2017.

Ïpek, E., McKee, S. A., Caruana, R., de Supinski, B. R.,
and Schulz, M. Efficiently exploring architectural
design spaces via predictive modeling. In International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2006.

Jin, T., Liu, Z., Yan, S., Eichenberger, A., and Morency, L.-P.
Language to network: Conditional parameter adaptation
with natural language descriptions. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, 2020.

Kocetkov, D., Li, R., Ben Allal, L., Li, J., Mou, C.,
Muñoz Ferrandis, C., Jernite, Y., Mitchell, M., Hughes,
S., Wolf, T., Bahdanau, D., von Werra, L., and de Vries,
H. The stack: 3 tb of permissively licensed source code.
Preprint, 2022.

Kustowski, B., Gaffney, J. A., Spears, B. K., Anderson,
G. J., Thiagarajan, J. J., and Anirudh, R. Transfer learn-
ing as a tool for reducing simulation bias: Application
to inertial confinement fusion. IEEE Transactions on
Plasma Science, 48:46–53, 2020.

Mendis, C. Towards Automated Construction of Compiler
Optimizations. Ph.d. thesis, Massachusetts Institute of
Technology, Cambridge, MA, 2020.

Munk, A., Zwartsenberg, B., Scibior, A., Baydin, A. G.,
Stewart, A. L., Fernlund, G., Poursartip, A., and Wood,
F. Probabilistic surrogate networks for simulators with
unbounded randomness. In The 38th Conference on
Uncertainty in Artificial Intelligence, 2022.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski,
H., Austin, J., Bieber, D., Dohan, D., Lewkowycz, A.,
Bosma, M., Luan, D., Sutton, C., and Odena, A. Show
your work: Scratchpads for intermediate computation
with language models, 2021.

OpenAI, :, Achiam, J., Adler, S., Agarwal, S., Ahmad, L.,
Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J.,
Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Bal-
aji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian, M.,
Belgum, J., Bello, I., Berdine, J., Bernadett-Shapiro, G.,

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Learning to Compile Programs to Neural Networks

Berner, C., Bogdonoff, L., Boiko, O., Boyd, M., Brakman,
A.-L., Brockman, G., Brooks, T., Brundage, M., Button,
K., Cai, T., Campbell, R., Cann, A., Carey, B., Carlson,
C., Carmichael, R., Chan, B., Chang, C., Chantzis, F.,
Chen, D., Chen, S., Chen, R., Chen, J., Chen, M., Chess,
B., Cho, C., Chu, C., Chung, H. W., Cummings, D., Cur-
rier, J., Dai, Y., Decareaux, C., Degry, T., Deutsch, N.,
Deville, D., Dhar, A., Dohan, D., Dowling, S., Dunning,
S., Ecoffet, A., Eleti, A., Eloundou, T., Farhi, D., Fedus,
L., Felix, N., Fishman, S. P., Forte, J., Fulford, I., Gao, L.,
Georges, E., Gibson, C., Goel, V., Gogineni, T., Goh, G.,
Gontijo-Lopes, R., Gordon, J., Grafstein, M., Gray, S.,
Greene, R., Gross, J., Gu, S. S., Guo, Y., Hallacy, C., Han,
J., Harris, J., He, Y., Heaton, M., Heidecke, J., Hesse,
C., Hickey, A., Hickey, W., Hoeschele, P., Houghton, B.,
Hsu, K., Hu, S., Hu, X., Huizinga, J., Jain, S., Jain, S.,
Jang, J., Jiang, A., Jiang, R., Jin, H., Jin, D., Jomoto, S.,
Jonn, B., Jun, H., Kaftan, T., Łukasz Kaiser, Kamali, A.,
Kanitscheider, I., Keskar, N. S., Khan, T., Kilpatrick, L.,
Kim, J. W., Kim, C., Kim, Y., Kirchner, H., Kiros, J.,
Knight, M., Kokotajlo, D., Łukasz Kondraciuk, Kondrich,
A., Konstantinidis, A., Kosic, K., Krueger, G., Kuo, V.,
Lampe, M., Lan, I., Lee, T., Leike, J., Leung, J., Levy, D.,
Li, C. M., Lim, R., Lin, M., Lin, S., Litwin, M., Lopez, T.,
Lowe, R., Lue, P., Makanju, A., Malfacini, K., Manning,
S., Markov, T., Markovski, Y., Martin, B., Mayer, K.,
Mayne, A., McGrew, B., McKinney, S. M., McLeavey, C.,
McMillan, P., McNeil, J., Medina, D., Mehta, A., Menick,
J., Metz, L., Mishchenko, A., Mishkin, P., Monaco, V.,
Morikawa, E., Mossing, D., Mu, T., Murati, M., Murk, O.,
Mély, D., Nair, A., Nakano, R., Nayak, R., Neelakantan,
A., Ngo, R., Noh, H., Ouyang, L., O’Keefe, C., Pachocki,
J., Paino, A., Palermo, J., Pantuliano, A., Parascandolo,
G., Parish, J., Parparita, E., Passos, A., Pavlov, M., Peng,
A., Perelman, A., de Avila Belbute Peres, F., Petrov, M.,
de Oliveira Pinto, H. P., Michael, Pokorny, Pokrass, M.,
Pong, V., Powell, T., Power, A., Power, B., Proehl, E.,
Puri, R., Radford, A., Rae, J., Ramesh, A., Raymond, C.,
Real, F., Rimbach, K., Ross, C., Rotsted, B., Roussez, H.,
Ryder, N., Saltarelli, M., Sanders, T., Santurkar, S., Sastry,
G., Schmidt, H., Schnurr, D., Schulman, J., Selsam, D.,
Sheppard, K., Sherbakov, T., Shieh, J., Shoker, S., Shyam,
P., Sidor, S., Sigler, E., Simens, M., Sitkin, J., Slama, K.,
Sohl, I., Sokolowsky, B., Song, Y., Staudacher, N., Such,
F. P., Summers, N., Sutskever, I., Tang, J., Tezak, N.,
Thompson, M., Tillet, P., Tootoonchian, A., Tseng, E.,
Tuggle, P., Turley, N., Tworek, J., Uribe, J. F. C., Vallone,
A., Vijayvergiya, A., Voss, C., Wainwright, C., Wang,
J. J., Wang, A., Wang, B., Ward, J., Wei, J., Weinmann,
C., Welihinda, A., Welinder, P., Weng, J., Weng, L., Wi-
ethoff, M., Willner, D., Winter, C., Wolrich, S., Wong,
H., Workman, L., Wu, S., Wu, J., Wu, M., Xiao, K., Xu,
T., Yoo, S., Yu, K., Yuan, Q., Zaremba, W., Zellers, R.,
Zhang, C., Zhang, M., Zhao, S., Zheng, T., Zhuang, J.,

Zhuk, W., and Zoph, B. Gpt-4 technical report, 2023.

Renda, A., Chen, Y., Mendis, C., and Carbin, M. Difftune:
Optimizing cpu simulator parameters with learned
differentiable surrogates. In International Symposium
on Microarchitecture, 2020.

Renda, A., Ding, Y., and Carbin, M. Programming with
neural surrogates of programs. In ACM SIGPLAN
International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, 2021.

Tercan, H., Guajardo, A., Heinisch, J., Thiele, T., Hopmann,
C., and Meisen, T. Transfer-learning: Bridging the gap
between real and simulation data for machine learning
in injection molding. Procedia CIRP, 72:185–190,
2018. ISSN 2212-8271. 51st CIRP Conference on
Manufacturing Systems.

Tseng, E., Yu, F., Yang, Y., Mannan, F., Arnaud, K. S.,
Nowrouzezahrai, D., Lalonde, J.-F., and Heide, F.
Hyperparameter optimization in black-box image
processing using differentiable proxies. ACM Trans-
actions on Graphics (TOG), 38(4), 7 2019. doi:
10.1145/3306346.3322996.

Turc, I., Chang, M., Lee, K., and Toutanova, K. Well-read
students learn better: The impact of student initialization
on knowledge distillation. CoRR, abs/1908.08962, 2019.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., brian ichter,
Xia, F., Chi, E. H., Le, Q. V., and Zhou, D. Chain of
thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing
Systems, 2022.

Zaremba, W. and Sutskever, I. Learning to execute, 2015.

Zhmoginov, A., Sandler, M., and Vladymyrov, M. Hy-
pertransformer: Model generation for supervised and
semi-supervised few-shot learning. In International
Conference on Machine Learning, 2022.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Learning to Compile Programs to Neural Networks

#include <math.h>

float fftSin(float x) {
return sin(-2 * 3.1415 * x);

}

int main() {
return 0;

}

Figure 6: Source code template used for checking
compilability, instantiated with the source of fftSin.

A. Execution Harness Example
Figure 6 shows an example of the code we use to check
whether functions can be compiled. Figure 7 shows an
example of the execution harness we use to collect outputs
from functions.

B. Training Details

Architecture BERT-Tiny
Surrogate topology 1→ 4→ 4→ 2
Hypernet/program batch size 32
Surrogate/input batch size 1024
Max program length (in tokens) 512
Tokenizer vocab size 30,522
Total number of programs in dataset 23,064
Number of tokens in dataset 1,035,021
Number of training programs 18,451
Number of testing programs 4,613
Number of train I/O pairs per program 1024
Number of test I/O pairs per program 1024
Number of epochs 1200
Learning rate 2e-5
GPU NVIDIA V100 16GB

Table 2: Experimental Setup

C. Parrot Benchmark Code
We present the code used for PARROTBENCHSHORT
in our evaluation (Section 5), which we adapted from
PARROTBENCH to be pointer-free. The code for the
benchmarks is shown in Figures 8, 9, 10, and 11.

D. Data Efficiency (Extended)
Figures 12 and 13 show the final test losses achieved by
each initialization method on each configuration, averaged
over trials.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

float inputs[1024][1] = {
{0.10740153873327762},
...

};

float fftSin(float x) {
return sin(-2 * 3.1415 * x);

}

int main() {
for (int i = 0; i < 1024; i++) {

float arg0 = inputs[i][0];
float out = fftSin(arg0);
printf("%f,", out);
printf("\n");

}
return 0;

}

Figure 7: Source code template used for checking ex-
ecutability and collecting outputs, instantiated with the
source of fftSin.

E. Training Time Evaluation (Extended)
Here we collect additional information, for both EXESTACK
test programs and PARROTBENCHSHORT programs, about
the number of epochs (Tables 3 and 7), initial train losses
(Tables 4 and 8), and initial test losses (Tables 5 and 9) for
each initialization method, as well as the baseline train and
test losses for each program (Tables 6 and 10).

F. MAML Implementation
In our implementation of MAML, we maintain two copies
of EXESTACK training data. In each epoch, we randomly
sample a batch without replacement from one copy and
another batch from the other copy. We use one batch to
collect the θ′i. We use the other batch to evaluate collect
losses with respect to each θ′i, which we then use to update θ.

We use α = 0.01 and β = 0.01.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Learning to Compile Programs to Neural Networks

float fftSin_Output0(float x) {
return sin(-2 * 3.1415 * x);

}

float fftSin_Output1(float x) {
return cos(-2 * 3.1415 * x);

}

Figure 8: Code for the fft benchmark in PARROTBENCHSHORT.

float invk2j_Output0(float x, float y) {
float l1 = 0.5 ;
float l2 = 0.5 ;
float theta2 = (float)acos(

((x * x) + (y * y) - (l1 * l1) - (l2 * l2)) /
(2 * l1 * l2)) ;

return (float)asin(
(y * (l1 + l2 * cos(theta2)) - x * l2 * sin(theta2)) /
(x * x + y * y)) ;

}

float invk2j_Output1(float x, float y) {
float l1 = 0.5 ;
float l2 = 0.5 ;
return (float)acos(

((x * x) + (y * y) - (l1 * l1) - (l2 * l2)) /
(2 * l1 * l2)) ;

}

Figure 9: Code for the invk2j benchmark in PARROTBENCHSHORT.

float euclideanDistance(
float p_0, float p_1, float p_2,
float c1_0, float c1_1, float c1_2) {
float r;

r = 0;
r += (p_0 - c1_0) * (p_0 - c1_0);
r += (p_1 - c1_1) * (p_1 - c1_1);
r += (p_2 - c1_2) * (p_2 - c1_2);

return sqrt(r);
}

Figure 10: Code for the kmeans benchmark in PARROTBENCHSHORT.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Learning to Compile Programs to Neural Networks

float sobel(
float w00, float w01, float w02,
float w10, float w11, float w12,
float w20, float w21, float w22)

{
float sx = 0.0;
sx += w00 * -1;
sx += w10 * 0;
sx += w20 * 1;
sx += w01 * -2;
sx += w11 * 0;
sx += w21 * 2;
sx += w02 * -1;
sx += w12 * 0;
sx += w22 * 1;

float sy = 0.0;
sy += w00 * -1;
sy += w10 * -2;
sy += w20 * -1;
sy += w01 * 0;
sy += w11 * 0;
sy += w21 * 0;
sy += w02 * 1;
sy += w12 * 2;
sy += w22 * 1;

float s = sqrt(sx * sx + sy * sy) ;
if (s >= (256 / sqrt(256 * 256 + 256 * 256)))
s = 255 / sqrt(256 * 256 + 256 * 256);

return s ;
}

Figure 11: Code for the sobel benchmark in PARROTBENCHSHORT.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Learning to Compile Programs to Neural Networks

Dataset Size 0%

Program Random DTI 1 DTI 2 DTI 3 HBN 1 HBN 2 HBN 3

3858 0.30 0.12 0.15 0.17 0.02 0.37 0.24
379 1.03 0.40 0.35 0.32 0.63 0.93 0.68
4141 0.37 0.12 0.15 0.17 0.37 0.23 0.16
619 0.32 0.06 0.07 0.07 0.46 0.04 0.23
4570 0.21 0.09 0.13 0.14 1.20× 10−4 1.11× 10−4 6.22× 10−6

Dataset Size 0.1%

Program Random DTI 1 DTI 2 DTI 3 HBN 1 HBN 2 HBN 3

3858 0.26 0.09 0.05 0.07 1.69× 10−3 0.22 0.10
379 0.06 0.40 0.76 0.24 0.42 0.96 0.54
4141 0.22 0.09 0.06 0.07 0.48 0.32 0.22
619 0.07 0.08 0.09 0.09 0.58 0.05 0.10
4570 1.19× 10−4 0.05 0.06 0.05 9.61× 10−7 1.52× 10−5 3.93× 10−6

Dataset Size 1%

Program Random DTI 1 DTI 2 DTI 3 HBN 1 HBN 2 HBN 3

3858 7.20× 10−5 0.08 0.01 0.01 1.54× 10−5 4.71× 10−4 2.30× 10−3

379 5.42× 10−5 1.01 0.03 0.01 2.47× 10−4 3.14× 10−4 1.73× 10−4

4141 1.09× 10−4 0.01 0.01 3.75× 10−3 3.37× 10−4 4.38× 10−5 5.73× 10−4

619 2.58× 10−3 0.07 0.03 0.03 0.01 2.55× 10−4 4.61× 10−4

4570 2.72× 10−8 5.22× 10−4 5.10× 10−6 1.46× 10−6 4.37× 10−10 1.78× 10−9 1.05× 10−10

Dataset Size 10%

Program Random DTI 1 DTI 2 DTI 3 HBN 1 HBN 2 HBN 3

3858 2.60× 10−6 9.95× 10−6 3.13× 10−5 4.31× 10−5 6.68× 10−8 4.45× 10−6 4.17× 10−6

379 5.34× 10−6 5.01× 10−6 4.41× 10−3 5.99× 10−6 7.82× 10−6 3.46× 10−6 6.00× 10−6

4141 2.53× 10−6 7.84× 10−6 3.07× 10−5 4.18× 10−5 1.92× 10−6 6.25× 10−7 1.81× 10−6

619 0.01 0.02 0.03 0.02 0.03 1.04× 10−6 1.30× 10−6

4570 3.19× 10−9 9.80× 10−7 9.24× 10−7 2.91× 10−7 4.76× 10−11 6.06× 10−9 1.33× 10−11

Dataset Size 100%

Program Random DTI 1 DTI 2 DTI 3 HBN 1 HBN 2 HBN 3

3858 2.18× 10−6 4.58× 10−6 2.05× 10−5 4.00× 10−5 4.11× 10−8 3.55× 10−6 3.56× 10−6

379 5.32× 10−6 8.59× 10−7 4.56× 10−6 4.80× 10−6 7.00× 10−6 2.76× 10−6 5.38× 10−6

4141 2.10× 10−6 4.62× 10−6 2.04× 10−5 3.99× 10−5 1.63× 10−6 5.46× 10−7 1.46× 10−6

619 3.73× 10−6 0.01 0.03 0.03 0.03 7.74× 10−7 1.03× 10−6

4570 1.98× 10−9 7.40× 10−7 1.26× 10−6 2.49× 10−7 5.18× 10−11 5.30× 10−10 4.22× 10−11

Figure 12: Average final test loss for each initialization method, program, and dataset size on a sample of 5 EXESTACK
test programs, from the 1,000 we evaluated on.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Learning to Compile Programs to Neural Networks

Dataset Size 0%

Program Random DTI 1 DTI 2 DTI 3 HBN 1 HBN 2 HBN 3

fft (0) 0.52 0.91 1.00 1.03 1.66 0.46 0.44
fft (1) 0.70 0.66 0.70 0.71 0.63 0.38 0.57
invk2j (0) 1.47 1.73 1.80 1.82 1.94 1.58 1.93
invk2j (1) 6.24 4.60 4.47 4.42 4.44 3.87 3.56
kmeans 0.76 0.19 0.20 0.20 0.23 0.27 0.24
sobel 0.74 0.19 0.19 0.19 0.29 0.22 0.21

Dataset Size 0.1%

Program Random DTI 1 DTI 2 DTI 3 HBN 1 HBN 2 HBN 3

fft (0) 8.39× 10−5 1.15× 10−3 0.06 0.02 1.55× 10−4 9.40× 10−5 6.24× 10−6

fft (1) 2.30× 10−4 1.20× 10−3 0.53 2.30× 10−5 1.79× 10−4 1.69× 10−4 6.09× 10−5

invk2j (0) 0.31 0.45 1.56 0.71 0.45 0.40 0.82
invk2j (1) 0.07 0.13 0.05 0.09 0.02 0.03 0.10
kmeans 8.20× 10−7 1.70× 10−5 3.59× 10−6 7.77× 10−6 1.45× 10−6 4.88× 10−7 1.08× 10−5

sobel 3.75× 10−4 1.81× 10−3 2.35× 10−4 4.20× 10−4 7.59× 10−5 4.57× 10−4 3.00× 10−4

Dataset Size 1%

Program Random DTI 1 DTI 2 DTI 3 HBN 1 HBN 2 HBN 3

fft (0) 3.80× 10−5 9.09× 10−5 0.06 2.01× 10−4 1.56× 10−5 8.29× 10−6 5.83× 10−7

fft (1) 1.17× 10−4 9.25× 10−4 0.49 1.16× 10−5 1.02× 10−4 1.25× 10−4 1.67× 10−5

invk2j (0) 0.07 0.05 1.29 0.07 0.03 0.05 0.02
invk2j (1) 0.02 3.29× 10−3 0.01 0.01 1.20× 10−3 1.05× 10−3 7.49× 10−4

kmeans 6.36× 10−7 2.29× 10−5 2.75× 10−6 3.83× 10−6 1.13× 10−6 4.83× 10−7 8.51× 10−6

sobel 1.07× 10−4 1.68× 10−4 9.82× 10−5 6.07× 10−5 1.10× 10−5 1.28× 10−4 2.33× 10−5

Dataset Size 10%

Program Random DTI 1 DTI 2 DTI 3 HBN 1 HBN 2 HBN 3

fft (0) 9.38× 10−6 5.46× 10−6 0.06 1.27× 10−5 3.74× 10−6 1.08× 10−6 1.85× 10−7

fft (1) 1.89× 10−5 2.59× 10−5 0.49 5.08× 10−6 1.64× 10−5 8.09× 10−5 5.50× 10−7

invk2j (0) 0.01 0.02 1.28 0.04 0.01 0.01 0.01
invk2j (1) 0.02 2.92× 10−3 0.01 0.01 8.54× 10−4 7.75× 10−4 5.59× 10−4

kmeans 3.79× 10−7 1.86× 10−6 4.90× 10−7 6.47× 10−7 6.58× 10−8 3.85× 10−7 2.24× 10−7

sobel 1.78× 10−5 1.07× 10−4 3.02× 10−5 1.97× 10−5 8.26× 10−6 1.22× 10−5 1.34× 10−5

Dataset Size 100%

Program Random DTI 1 DTI 2 DTI 3 HBN 1 HBN 2 HBN 3

fft (0) 7.26× 10−7 5.52× 10−7 3.61× 10−3 1.60× 10−6 6.60× 10−6 2.18× 10−7 6.95× 10−8

fft (1) 8.16× 10−6 1.02× 10−5 1.81× 10−5 1.20× 10−6 1.87× 10−6 1.29× 10−6 1.11× 10−7

invk2j (0) 3.23× 10−4 1.62× 10−3 0.10 0.01 2.00× 10−4 2.13× 10−4 2.04× 10−4

invk2j (1) 0.02 1.04× 10−3 0.01 2.52× 10−3 4.87× 10−5 5.91× 10−5 2.81× 10−5

kmeans 9.14× 10−7 1.05× 10−6 1.09× 10−7 4.75× 10−7 2.84× 10−6 3.07× 10−7 4.64× 10−7

sobel 1.27× 10−6 1.71× 10−5 1.13× 10−5 4.49× 10−6 1.18× 10−6 1.87× 10−6 1.62× 10−6

Figure 13: Average final test loss for each initialization method, program, and dataset size on PARROTBENCHSHORT.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Learning to Compile Programs to Neural Networks

Program Random DTI 1 DTI 2 DTI 3 HBN 1 HBN 2 HBN 3

3858 4247.0 4998.0 4998.0 4998.0 1314.0 4998.0 4998.0
379 4466.0 3897.0 4998.0 4998.0 4998.0 4998.0 4998.0
4141 4300.0 4998.0 4998.0 4998.0 3654.0 2430.0 4350.0
619 4330.0 4998.0 4998.0 4998.0 4998.0 1742.0 3864.0
4570 3249.0 4998.0 4998.0 4998.0 132.0 4998.0 285.0
1708 2362.0 4998.0 4998.0 4998.0 4998.0 4998.0 4998.0
252 4405.0 4998.0 4998.0 4998.0 2117.0 615.0 450.0
4046 4372.0 4998.0 4998.0 4998.0 240.0 447.0 1272.0
4222 4372.0 4998.0 4998.0 4998.0 1281.0 2469.0 1191.0
2384 4001.0 4998.0 4998.0 4998.0 801.0 381.0 96.0

Table 3: Number of epochs required for each initialization method to achieve the baseline test error on each of a sample
of 10 EXESTACK test programs, from the 1,000 we evaluated on.

Program Random DTI 1 DTI 2 DTI 3 HBN 1 HBN 2 HBN 3

3858 0.4 0.1 0.2 0.2 1.9× 10−2 0.4 0.2
379 0.9 0.4 0.4 0.3 0.6 0.9 0.7
4141 0.4 0.1 0.2 0.2 0.4 0.2 0.2
619 0.3 0.1 0.1 0.1 0.5 3.8× 10−2 0.2
4570 0.2 0.1 0.1 0.1 1.2× 10−4 1.1× 10−4 5.9× 10−6

1708 0.2 0.1 0.1 0.1 0.1 0.3 0.1
252 25.0 22.0 21.5 21.3 3.9 4.7 0.8
4046 0.4 0.1 0.2 0.2 9.6× 10−3 3.6× 10−3 1.2× 10−2

4222 0.4 0.1 0.2 0.2 4.3× 10−2 0.1 1.7× 10−2

2384 0.9 0.3 0.2 0.2 2.8× 10−2 3.4× 10−2 1.2× 10−3

Table 4: Initial train losses for neural surrogates produced by each initialization method on a sample of 10 EXESTACK
test programs, from the 1,000 we evaluated on.

Program Random DTI 1 DTI 2 DTI 3 HBN 1 HBN 2 HBN 3

3858 0.4 0.1 0.2 0.2 2.0× 10−2 0.4 0.2
379 0.9 0.4 0.3 0.3 0.6 0.9 0.7
4141 0.4 0.1 0.2 0.2 0.4 0.2 0.2
619 0.3 0.1 0.1 0.1 0.5 3.7× 10−2 0.2
4570 0.2 0.1 0.1 0.1 1.2× 10−4 1.1× 10−4 6.2× 10−6

1708 0.2 0.1 0.1 0.1 0.1 0.3 0.1
252 25.1 22.1 21.5 21.3 3.9 4.7 0.8
4046 0.4 0.1 0.2 0.2 9.4× 10−3 3.8× 10−3 1.2× 10−2

4222 0.4 0.1 0.2 0.2 4.2× 10−2 0.1 1.6× 10−2

2384 0.9 0.3 0.2 0.2 2.7× 10−2 3.3× 10−2 1.2× 10−3

Table 5: Initial test losses for neural surrogates produced by each initialization method on a sample of 10 EXESTACK test
programs, from the 1,000 we evaluated on.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Learning to Compile Programs to Neural Networks

Program Final Baseline Train Loss Final Baseline Test Loss

3858 3.7× 10−6 ± 4.1× 10−7 3.7× 10−6 ± 4.3× 10−7

379 1.9× 10−6 ± 4.1× 10−7 2.0× 10−6 ± 4.1× 10−7

4141 3.5× 10−6 ± 3.7× 10−7 3.6× 10−6 ± 3.7× 10−7

619 3.2× 10−6 ± 5.2× 10−7 3.5× 10−6 ± 6.3× 10−7

4570 5.2× 10−10 ± 1.3× 10−10 5.2× 10−10 ± 1.3× 10−10

1708 8.8× 10−10 ± 4.3× 10−12 8.8× 10−10 ± 1.7× 10−12

252 7.6× 10−5 ± 2.7× 10−5 7.4× 10−5 ± 2.8× 10−5

4046 3.5× 10−6 ± 5.1× 10−7 3.5× 10−6 ± 5.4× 10−7

4222 3.5× 10−6 ± 5.1× 10−7 3.5× 10−6 ± 5.4× 10−7

2384 4.7× 10−6 ± 5.4× 10−7 4.8× 10−6 ± 6.3× 10−7

Table 6: Final baseline train and test losses for a sample of 10 EXESTACK test programs, from the 1,000 we evaluated on.

Program Random DTI 1 DTI 2 DTI 3 HBN 1 HBN 2 HBN 3

invk2j (0) 4066.0 4998.0 4998.0 4998.0 3083.0 4236.0 3698.0
invk2j (1) 2914.0 4998.0 4998.0 4998.0 3132.0 4087.0 1768.0
kmeans 117.0 898.0 268.0 460.0 138.0 101.0 181.0
fft (1) 2026.0 4998.0 4998.0 317.0 572.0 1259.0 217.0
sobel 3067.0 4998.0 4998.0 4998.0 3119.0 4324.0 2436.0
fft (0) 751.0 658.0 4998.0 1320.0 555.0 244.0 76.0

Table 7: Number of epochs required for neural surrogates produced by each initialization method to achieve the baseline
test error on each PARROTBENCHSHORT program.

Program Random DTI 1 DTI 2 DTI 3 HBN 1 HBN 2 HBN 3

invk2j (0) 1.5 1.7 1.8 1.8 1.9 1.6 1.9
invk2j (1) 6.2 4.6 4.4 4.4 4.4 3.8 3.5
kmeans 0.7 0.2 0.2 0.2 0.3 0.3 0.3
fft (1) 0.7 0.7 0.7 0.7 0.6 0.4 0.6
sobel 0.7 0.2 0.2 0.2 0.3 0.2 0.2
fft (0) 0.5 0.9 1.0 1.0 1.6 0.5 0.4

Table 8: Initial train losses for neural surrogates produced by each initialization method on PARROTBENCHSHORT programs.

Program Random DTI 1 DTI 2 DTI 3 HBN 1 HBN 2 HBN 3

invk2j (0) 1.4 1.7 1.8 1.8 1.9 1.6 1.9
invk2j (1) 6.2 4.6 4.5 4.4 4.4 3.9 3.6
kmeans 0.8 0.2 0.2 0.2 0.2 0.3 0.2
fft (1) 0.7 0.7 0.7 0.7 0.6 0.4 0.6
sobel 0.7 0.2 0.2 0.2 0.3 0.2 0.2
fft (0) 0.5 0.9 1.0 1.0 1.7 0.5 0.4

Table 9: Initial test losses for neural surrogates produced by each initialization method on PARROTBENCHSHORT programs.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Learning to Compile Programs to Neural Networks

Program Final Baseline Train Loss Final Baseline Test Loss

invk2j (0) 1.2× 10−4 ± 2.9× 10−5 2.1× 10−4 ± 5.4× 10−5

invk2j (1) 9.1× 10−5 ± 2.7× 10−5 7.1× 10−5 ± 2.2× 10−5

kmeans 2.1× 10−6 ± 8.4× 10−7 4.7× 10−7 ± 2.7× 10−8

fft (1) 1.0× 10−5 ± 7.9× 10−7 7.1× 10−6 ± 1.9× 10−8

sobel 4.2× 10−6 ± 4.7× 10−7 2.7× 10−6 ± 2.8× 10−8

fft (0) 5.6× 10−6 ± 2.2× 10−6 2.3× 10−6 ± 3.4× 10−7

Table 10: Final baseline train and test losses for PARROTBENCHSHORT programs.

18

	Introduction
	Neural Surrogate Compilation
	The Neural Surrogate Training Problem
	Neural Surrogate Compilation

	HyBERTNet
	Architecture
	Training

	ExeStack
	Evaluation
	Methodology
	HyBERTNet Architecture
	Datasets
	Dataset-Tailored Initialization
	Quantifying Improvements

	HyBERTNet Improvements To Data Efficiency
	Methodology
	Results

	HyBERTNet Improvements To Training Time
	Methodology
	Results

	Related Work
	Conclusion
	Impact Statement
	Execution Harness Example
	Training Details
	Parrot Benchmark Code
	Data Efficiency (Extended)
	Training Time Evaluation (Extended)
	MAML Implementation

