
LIVING LIFE ON THE LOW-POWER EDGE

TINY MODELS ON TINY DEVICES

A thesis submitted by

Logan Weber
in partial fulfillment of the requirements for the degree of

Master of Science.

Thesis approved by
Date:

Paul G. Allen School of Computer Science & Engineering,
University of Washington

Finish it until it’s done.
JARED ROESCH

If you’re gonna be dumb,
you gotta be tough.

ZACH TATLOCK

Abstract

Insights from researchers working on quantization and alternative numeric formats
have challenged longstanding assumptions of the computational horsepower required to
run artificial neural networks. With the theoretical bar to entry lowered, the practical
bar to entry remains high, as nearly all machine learning (ML) frameworks were built
upon the assumption of access to an operating system and computational resources
aplenty. To support edge devices, ML frameworks have resorted to engineering-intensive
solutions that shoehorn these devices into the existing system in a one-off fashion.
Furthermore, there exist no frameworks that offer autotuning of operator performance
for edge devices, a practical necessity to cope with the everchanging hardware landscape.

We present µTVM, an extension of the TVM compiler stack to target bare-metal
devices. µTVM facilitates model execution and automatic optimization with minimal
requirements of target devices. As one of our chief design goals, using µTVM feels
deceptively similar to using standard TVM, while performance remains competitive
with libraries hand-optimized by experts.

Acknowledgements

Of all the brilliant minds that have graced my presence in my time at the University of
Washington, there are a select few without whom none of the work in this thesis would
have been possible.

Jared Roesch, my mentor on one of my first research projects and my friend thereafter.
I am thankful for all of the meetings he started1 in the doorway to the UW PLSE lab
(much to its occupants’ annoyance), for his ferociously gung-ho attitude, and for his steady
stream of hot takes.

The Sad Plus2. What began as a group of fellow disciples of Jared grew into a friend
group in its own right. Whether we were on a deadline or off a deadline, we shared long
nights in the PLSE lab listening to Marisa’s only Spotify playlist for the 1000th time,
and I will always treasure the inspiring atmosphere they fostered.

Zachary Tatlock, my faculty advisor. Zach showed me the ropes of research and taught
me by example what it takes to become a force of nature in academia. In every research
meeting, Zach brought piercing insights and quelled our tendency towards analysis paralysis.

Tianqi Chen, my mentor for the topic of this thesis: µTVM. I am grateful for his
unwavering resolve to make things work, for his ability to constantly humble me, and for
guiding the design of µTVM with an expert’s eye.

Pratyush Patel, my collaborator on µTVM in the early days. Pratyush was the original
driver of µTVM. He dug through the literature, developed a compelling case for why the
world needs µTVM, and framed the problem so clearly that I, without any background in
microcontrollers, was able to design and implement this infrastructure.

Luis Vega, an always-friendly face to turn to in the SAMPL group. While struggling
to bridge the gap between running µTVM on a simulator and running on a real device,
Luis offered to show me the fundamentals of working with microcontrollers. I knew
nothing about hardware3, and he was incredibly patient in teaching me the basics. These
interactions were brief, but immeasurably helpful.

1and finished, of course
2with members Josh Pollock, Altan Haan, Marisa Kirisame, and yours truly
3and still know nothing about it, for that matter!

Introduction

It was long believed that deep learning models required high-precision (at least 32-bit)
IEEE-754 floating point values to achieve decent accuracy, as the theory of deep learning is
based on the infinite-precision real numbers. However, work on quantization and alternative
numeric representations have invalidated this assumption and shown us there is a sense
in which the theory of neural networks is not chained to the reals, but rather some more
abstract notion of numeric systems [17, 4, 9, 8, 10]. While this work improved performance
and memory usage on desktops, it simultaneously lowered the bar to entry for devices
broadly.

In response to these developments, low-cost, AI-powered consumer devices have sprung
up, leading to widespread interest in “bare-metal” devices among ML researchers and
practitioners [6, 11, 7]. Bare-metal devices are even more stripped-down of computational
amenities than embedded devices (such as Raspberry Pi’s), because they cannot even run
general-purpose operating systems.

While it is already possible for experts to run some models on some bare-metal devices,
optimizing models for diverse sets of devices is challenging, often requiring manually
optimized device-specific libraries. And for those platforms without, say, Linux support,
there exists no scalable solution for deploying models. Because of this, in order to target
new devices, developers must implement one-off custom software stacks for managing
system resources and scheduling model execution.

The manual optimization of machine learning software is not unique to the domain of
bare-metal devices. In fact, this has been a common theme for developers working with
other hardware backends (e.g., GPUs and FPGAs). TVM, an end-to-end deep learning
compiler, has proven resilient to the onslaught of new hardware targets, but until now, it
couldn’t grapple with the unique profile of microcontrollers [2]. To solve the problem in
this domain, we’ve extended TVM to feature a microcontroller backend, called µTVM 4.
µTVM facilitates host-driven execution of tensor programs on bare-metal devices and
enables automatic optimization of these programs via AutoTVM [3], TVM’s built-in tensor
program optimizer.

µTVM consists of three core contributions:

• Low-level interfaces for interaction with bare-metal devices in TVM.

• An implementation of these low-level interfaces for JTAG-compatible bare-metal
devices.

• A driver stack, which utilizes these interfaces to support memory management, library
linking, model execution, and automatic tensor program optimization.

4pronounced “MicroTVM”

2

https://www.raspberrypi.org/
https://github.com/apache/incubator-tvm

It is worth noting that by targeting bare-metal devices, we have accidentally included
support for driving hardware accelerators, as they are often subject to the same constraints.
Thus, µTVM also functions as a tool for faster iteration on hardware designs, since a
hardware designer is unlikely to develop an entire operating system for their accelerator, but
they are quite likely to adapt a compiler toolchain and implement a device communication
protocol.

Background

To understand where µTVM fits in the landscape of work on machine learning systems,
it helps to understand what bare-metal devices are, the conditions in which deep learn-
ing frameworks and operator compilers evolved, and how their evolution led to their
shortcomings in serving bare-metal devices.

Bare-Metal Devices

We classify bare-metal devices as devices without a sophisticated OS or software stack.
These primarily include embedded boards, such as certain RISC-V boards, Arduinos, soft-
cores running on FPGAs, etc. There is an implicit assumption that bare-metal targets can
run basic, cross-compiled C programs, although standard library support is not mandatory.
The key challenges in programming these devices lies in their highly-constrained amount
of memory (usually on the order of a few hundred kilobytes) and low processing power
(usually one or two wimpy cores). However, they are useful in cyber-physical domains due
to their small size, easy interfacing with commercial sensors, and low energy consumption.

Deep Learning Frameworks

Existing deep learning frameworks provide expressive, high-level interfaces (usually in
Python) to execute models. But these typically rely on software stacks that are not
supported on bare-metal devices. For example, while TVM compiles code into LLVM IR
for CPU backends, there is no publicly available Arduino LLVM, and hence the same code
cannot be reused for these devices. Furthermore, space restrictions on bare-metal devices
often preclude the possibility of access to dynamic memory allocation (e.g., malloc).

Recent deep learning frameworks like TensorFlow Lite (TF Lite) and compiler stacks
like TVM do provide a solution to program embedded boards such as the Raspberry Pi.
However, Raspberry Pi’s are relatively powerful computers, given that they run Linux
and have gigabytes of memory. Consequently, the above frameworks still depend on some
components of the OS stack. For instance, AutoTVM depends on a remote procedure call
(RPC) server running on the Raspberry Pi. On the other hand, bare-metal devices do not
have such sophisticated software support. Although setting up a minimal RPC server may
be feasible, it would require effort to build it from scratch for each bare-metal device, in

3

https://www.tensorflow.org/lite

addition to consuming the already meager on-board resources. As a result, any effective
solution must be customized to target these platforms, while also prioritizing portability.

Researchers have made headway in supporting novel architectures with TF Lite, such as
RISC-V devices [15], but the approaches thus far have involved modifying the framework’s
source code to include hand-optimized operator implementations.

There has been a recent effort by the TensorFlow developers to support microcon-
trollers, called TensorFlow Lite Micro. TFLite Micro relies on manually optimized libraries,
whereas µTVM can directly make use of AutoTVM to automatically generate and optimize
programs on bare-metal devices. Furthermore, their approach does not enable unification
of microcontroller interaction with regular device interaction, as TensorFlow Lite Micro is
a fork of TensorFlow Lite which is already a fork of TensorFlow.

Low-Level Tensor Compilers

Low-level tensor compilers (or operator compilers) are focused on the production of high-
performance operators which implement compute-intensive operations such as matrix
multiplication or convolution. Operator compilers perform code generation for sets of scalar
loop nests, but only represent a restricted subset of a whole program, ignoring details such
as memory allocation/management, data structures, closures, and arbitrary control flow.
The most notable designs are either inspired by the compute-schedule split introduced
by Halide [13] or the polyhedral framework, as used by Tensor Comprehensions [18] and
Diesel [5].

TVM

TVM began as an operator compiler based on the compute-schedule split paradigm, but has
since grown into an end-to-end optimizing compiler for deep learning that bridges the gap
between productivity-focused DL frameworks and efficiency-oriented hardware backends.
It has done so by introducing a high-level differentiable intermediate representation, called
Relay, atop its low-level tensor expression IR [14], along with runtime targets for Relay to
compile to [16]. Relay expresses entire models (static or dynamic) without requiring a host
language, allowing previously disparate mechanisms in ML frameworks (shape inference,
operator fusion, backpropagation) to be written as mere compiler passes. The entire TVM
stack can be succinctly visualized by Figure 1.

AutoTVM

Since its release in 2018, AutoTVM has become a killer feature of TVM. It works by
making use of simulated annealing and machine learning to optimize tensor programs. A
full explanation of the algorithm AutoTVM uses is beyond the scope of this thesis, so for

4

https://www.tensorflow.org/lite/microcontrollers

High-Level Differentiable IR

Tensor Expression IR

VTA

FPGA ASIC

LLVM, CUDAµTVM

AutoTVM

Figure 1: A high-level depiction of the TVM stack, and where µTVM fits

our purposes, we treat it as a black-box optimizer and only describe its interaction with
the µTVM runtime.

Following the flow of Figure 2, an autotuning loop begins with some operator (e.g.,
convolution) for which we would like to generate an optimized implementation. To start,
AutoTVM provides some initial implementation which makes no promise to be performant.
This implementation is fed through the µTVM runtime and loaded onto the device. Then,
some sample inputs are generated and the program is run and timed with those inputs. This
timing data is then sent to AutoTVM, which it uses to score the implementation. AutoTVM
then generates a new (often better) implementation and repeats the timing/scoring process.
This loop is repeated until the performance meets some user-defined threshold.

Design

The design of µTVM was ultimately motivated by the question,

Can we make bare-metal device interaction feel like regular device
interaction?

However, we did not wish to fall prey to the same temptations encountered by others in
previous approaches—namely, of constructing a bespoke vertical for a particular microcon-
troller. So we constrained our design with another question:

What can we do with features common to all microcontrollers?

5

µTVM Runtime

C Code
Generator

μDevice
Interface

AutoTVM

run and time

send program

return timing data

improve
implementation

Cross-
Compiler
Interface

Figure 2: The AutoTVM optimization loop, when the target device is a microcontroller

Fueled by these design considerations, we have built a runtime infrastructure that
operates under the smallest reasonable set of requirements that can be expected of a device.
In particular, users need only provide:

1. A C cross-compiler toolchain for their device
2. A method for reading/writing to device memory and executing code on the device
3. A specification containing the device’s memory layout and general architectural

characteristics
4. A code snippet that prepares the device for function execution

Most bare-metal devices have support for C and JTAG (a debugging protocol), so (1) and
(2) usually come for free! Furthermore, (3) and (4) are often very small asks (examples in
Figure 3).

Once these requirements are met for a device, the delta from CPU-targeted TVM and
microcontroller-targeted TVM is miniscule, as depicted in Figure 4.

Device Sessions

Given the networked nature of microcontroller interaction, we slightly deviate from standard
TVM code by introducing the concept of MicroSessions.

Every piece of functionality in µTVM relies on having an open session with the target
device. This requirement forces our hand in creating a syntactic distinction from normal
TVM code—namely, this one:

...
with micro.Session(DEV_CONFIG):

...

6

device_config = {
Unique identifier for the device
'device_id': 'arm.stm32f746xx',
Prefix of each binary (e.g., arm-none-eabi-gcc)
in the cross-compilation toolchain
'toolchain_prefix': 'arm-none-eabi-',
First address of RAM
'base_addr': 0x20000000,
Dictionary of desired ELF section sizes (in bytes)
'section_sizes': {

'text': 18000,
'rodata': 100,
'data': 100,
...

},
Device word size
'word_size': 4,
Whether to use Arm's thumb ISA
'thumb_mode': True,
Method of communication with the device
'comms_method': 'openocd',
OpenOCD server address (if 'comms_method' is 'openocd')
'server_addr': '127.0.0.1',
OpenOCD server port (if 'comms_method' is 'openocd')
'server_port': 6666,

}

.syntax unified

.cpu cortex-m7

.fpu softvfp

.thumb

.section .text.UTVMInit

.type UTVMInit, %function
UTVMInit:

Enable FPU.
ldr r0, =0xE000ED88
ldr r1, [r0]
ldr r2, =0xF00000
orr r1, r2
str r1, [r0]
dsb
isb
Set stack pointer.
ldr sp, =_utvm_stack_pointer_init
Jump to main function of uTVM
device runtime.
bl UTVMMain

.size UTVMInit, .-UTVMInit

Figure 3: (Left) Example of a device configuration dictionary for an Arm STM32F746-
series microcontroller. (Right) Example of a device initialization code snippet for an Arm
STM32F746-series microcontroller. The symbol _utvm_stack_pointer_init is exported
by µTVM while linking this code snippet with the device runtime; it points to the end of
the stack section in device memory.

7

Grab ResNet-18 expressed in Relay.
resnet = get_resnet()

Compile from Relay into an operator
graph description, operator source,
and model parameters.
graph, c_mod, params = relay.build(

resnet, target='llvm', params=weights)

Create graph runtime from operator
graph, operator module, and device
context.
graph_mod = graph_runtime.create(

graph, micro_mod, tvm.cpu(0))
Set model weights.
mod.set_input(**params)
Execute with `image` as the input.
mod.run(data=image)
Show the prediction.
print(get_prediction(mod))

Generate a configuration for
the microcontroller.
DEV_CONF = stm32f746xx.generate_config(

'127.0.0.1', 6666)
Grab ResNet-18 expressed in Relay.
resnet = get_resnet()
Begin a uTVM session with the device.
with micro.Session(DEV_CONF):

Compile from Relay into an operator
graph description, operator source,
and model parameters.
graph, c_mod, params = relay.build(

resnet, target='c', params=weights)
Convert generated module into
microcontroller-compatible module
and load onto the device.
micro_mod = create_micro_mod(

c_mod, DEV_CONF)
Create graph runtime from operator
graph, operator module, and device
context.
graph_mod = graph_runtime.create(

graph, micro_mod, tvm.micro_dev(0))
Set model weights.
mod.set_input(**params)
Execute with `image` as the input.
mod.run(data=image)
Show the prediction.
print(get_prediction(mod))

Figure 4: A side-by-side comparison of running ResNet-18 in TVM on a CPU (left) and on
an Arm STM32F746-series microcontroller (right). The key differences are (1) we need
to create a device configuration that tells µTVM which OpenOCD server to connect to,
(2) we need to create a session with the device using this configuration, and (3) we need
to convert the raw C module generated by Relay into a µTVM-compatible module (via
create_micro_mod).

8

Every line inside this with block can call standard TVM functions, but when a µTVM
device context is used (e.g., tvm.micro_dev(0)), standard TVM functions, such as allocating
a tensor or executing a model, now run through the µTVM infrastructure.

When such a with block is entered, it initializes a connection with the device, using
whichever communication method was specified in DEV_CONFIG (usually OpenOCD). The
µTVM device runtime is then cross-compiled, using whichever cross-compiler was specified
in DEV_CONFIG. Finally, space for the compiled binary is allocated by the host, and the
binary is loaded onto the device using the opened connection. Once the runtime is situated
on the device, loading tensors and modules becomes possible.

Module Creation

One of the core abstractions in TVM is that of a module. A module stores a set of related
functions for a particular device/runtime target. Given that microcontrollers don’t normally
have operating systems, µTVM needs to do a lot of extra work to maintain this high-level
abstraction. To see what’s going on, we’ll trace through the process of creating and loading
a µTVM-compatible module.

Suppose we have a micro.Session open with our device and a TVM schedule that
implements 2D convolution. If we want to load it onto our microcontroller, we need it to
emit C code. To do so, we just need to set the build target as C, which routes the build
process through TVM’s C code generation backend (see Figure 5).

First, we construct a Relay function
that computes `x + y`.
func = relay.fromtext("""
v0.0.4
fn (%x: Tensor[(1024,), float32],

%y: Tensor[(1024,), float32]) {
add(%x, %y)

}
""")
Disable vectorization, since uTVM does not
currently support it natively.
with tvm.build_config(disable_vectorize=True):

Set `target` to 'c', and the build
is now routed to C code generation.
_, src_mod, _ = relay.build(

func, target='c', params={})
Now, we can see the generated source.
print(src_mod.get_source())

int32_t add(
void* args,
void* arg_type_ids,
int32_t num_args) {

void* A_val = ((TVMValue*) args)[0].v_handle;
void* B_val = ((TVMValue*) args)[1].v_handle;
void* C_val = ((TVMValue*) args)[2].v_handle;
TVMArray A_arr = ((TVMArray*) A_val)[0];
TVMArray B_arr = ((TVMArray*) B_val)[0];
TVMArray C_arr = ((TVMArray*) C_val)[0];
float* A = (float*) A_arr.data;
float* B = (float*) B_arr.data;
float* C = (float*) C_arr.data;
for (int32_t i = 0; i < 1024; ++i) {

C[i] = A[i] + B[i];
}
return 0;

}

Figure 5: (Left) TVM code to produce C source code from a Relay function (Right) C
source code resulting from running the code on the left (modified to be human-readable)

Once we’ve generated C source code and stored it in a TVM module, that module still
resides on the host machine. In order to load it onto the device, we run it through one
of the core functions in the µTVM infrastructure: create_micro_mod (see Figure 4 for
example usage).

9

This function cross-compiles the C source within the module, allocates room for the
resulting binary (so it can coexist with the runtime or other modules resident in device
memory), then sends each section of the binary to its allocated slot on the device. Once the
module binary is snug in device memory, function pointers within the binary are patched
to give the module access to helper functions in the device runtime (e.g., for allocating
scratchpads)—a primitive form of dynamic linking. Additionally, symbol mappings from
the module binary are stored to allow obtaining remote module handles by name (e.g.,
conv_func = micro_mod['conv2d']). When a named access is attempted, the symbol
table is searched for the name, and if found, a wrapper around the symbol’s address is
returned that will call into µTVM’s function execution mechanisms when given arguments
(e.g., conv_func(activations, weights, output)).

Tensor Creation

Before we can call an on-device operator, we first need to allocate both input and output
tensors (functions are generated in destination-passing style). Within a micro.Session
block, on-device tensors can be created with the snippet below:

data_np = ... # Generate data as NumPy array.
data = tvm.nd.array(data_np, ctx=tvm.micro_dev(0))

Based on its data type (e.g., int8, float32, etc.) and shape, the tensor’s size in bytes
is calculated, and the host allocates a region of memory of that size in the device’s heap.
The backing NumPy data is then loaded into the allocated region, and the user is given a
remote handle to the tensor.

Function Calls

Operator execution is perhaps the trickiest part of this system. To simplify its presentation,
we’ll first cover strict execution (where operators are executed as soon as they’re called),
then lazy execution (where operators are only executed once their results are needed)—the
latter is how the system actually works.

Strict Execution

Since functions are called in destination-passing style (e.g., conv_func(activations,
weights, output)), all required tensors are already allocated on the device, so we only
need to send metadata to the device (device address, shape, and data type), to tell
it which of its resident tensors to use. The runtime representation of a function call
(Figure 6) includes this metadata, as well as the address of the function being called. Before
constructing this representation, the metadata needs to be serialized into the arguments
section on the device that exists expressly for this purpose.

10

https://numpy.org/

/*
* Task Structure for uTVM
*/

typedef struct {
/* Pointer to function to call for this task */
int32_t (*func)(void*, void*, int32_t);
/* Array of argument tensors */
TVMValue* arg_values;
/* Array of datatype codes for each argument */
int* arg_type_codes;
/* Number of arguments */
int32_t num_args;

} UTVMTask;

Figure 6: Struct declaration for µTVM function call metadata

In the strict setting, there is a single global UTVMTask instance that we, from the host
side, write into. Once we have written to the task, the runtime has everything it needs
to execute the function, and we can begin execution at the runtime’s entry point. The
runtime will perform some lightweight initialization, run our operator, then return control
to the host.

Lazy Execution

In practice, executing operators as soon as the user requests to becomes prohibitively
expensive, as communication overhead begins to dominate. We can improve the throughput
of our system by delaying evaluation until the user needs the results of the call (triggered
by copying a tensor from the device or calling Sync on the TVM side).

The device-side runtime needs to be modified to accomodate this mechanism by storing
an array of UTVMTasks and looping over these tasks during execution, instead of storing
and executing a single UTVMTask.

Thus, with lazy execution, UTVMTasks are enqueued on the host side as the user or
runtime calls functions. Then when execution is triggered by the conditions mentioned
above, these tasks are written to the device, execution begins, and the device-side runtime
handles the rest.

AutoTVM with MicroTVM

So far, the runtime we’ve described doesn’t seem very useful for model deployment, since
it relies so heavily on a host machine. This is intentional, and this first version of the
runtime has in fact been designed with a different goal in mind: AutoTVM support.

In general, AutoTVM proposes candidate kernels, runs them on the target backend
with random inputs, then uses the timing results to improve its search process. Given that

11

AutoTVM only cares about single operator executions, we have designed the runtime to
be operator-oriented, as opposed to being model-oriented. In the case of µTVM though,
communication with the device will usually dominate the execution time. Lazy execution
is an important feature, because it allows us to run the same operator many times without
returning control to the host, so the communication cost is amortized over each run, and
we get a better idea of the performance profile.

Because AutoTVM requires rapid iteration on large numbers of candidate kernels,
µTVM infrastructure only makes use of RAM currently. However, for a self-hosted runtime
(Section), we will surely need to make use of both flash memory and RAM.

The Hosted Graph Runtime

Although the hosted runtime was designed for AutoTVM, we can still run full models (as
long as they don’t have any control flow). This functionality comes for free just by using
TVM’s graph runtime, but with a µTVM context.

In this mode of execution, the model is expressed as a graph, where each node is an
operator, and each directed edge represents the direction in which a tensor flows. In order
to execute this graph, inputs are given and the execution order of operators is defined as a
topological sort of the graph.

When used with a µTVM context, the graph runtime loads all operators in the model
graph onto the device, and the host drives the overarching control flow of the execution.
An added benefit of lazy execution with the graph runtime is that it allows for entire
models to be run on the device without returning control flow to the host until the very
end (see Figure 7). In fact, the only reliance on the host with the graph runtime is for
tensor allocation and operator scheduling (which is just a topological sort of the dependence
graph).

Note that entire tensors are not being transmitted between every operator execution.
Instead, tensors remain resident in device memory for as long as they are alive in the graph,
and it is actually metadata that is being transmitted. This metadata simply describes
which tensors to use for a particular operator invocation.

Implementation

There are four key components in the µTVM runtime that allow us to plug into TVM:

• LowLevelDeviceAPI: Provides read, write, and execute capabilities for a device.

• MicroSession: Provides functionality to load compiled libraries onto the device and
to execute functions (using a LowLevelDeviceAPI backend).

• MicroDeviceAPI: Performs on-device memory management and provides helper func-
tions to copy memory to and from the device for TVM objects (using a MicroSession

12

Conv2D

DeviceHost

AvgPool2D

…

…

Conv2D

DeviceHost

AvgPool2D

…

…

= Data Dependence = Control Flow

Host-Side Task Buffer

…

Conv2D

AvgPool2D

…

Strict Lazy

= Flush Tasks

1

2

3

4

5 6

7

1

2

3

4

5

Figure 7: Comparison of device communication while using the graph runtime with
strict µTVM task execution vs. lazy task execution. The ordering of events is shown via
numbering.

instance).

• MicroModule: Provides functionality to load compiled libraries onto the device and
to execute functions (using a MicroSession instance).

The point of providing MicroDeviceAPI and MicroModule implementations is primarily
to fit neatly into TVM’s APIs for device-agnostic interaction, but most of the heavy lifting
is done in MicroSession, where all of the device bookkeeping and core functionality is
implemented. The implementations of MicroDeviceAPI and MicroModule consist of mostly
plumbing that feeds into functions provided by MicroSession. This relationship is shown
graphically in Figure 8.

LowLevelDeviceAPI

Before we can do anything of use with bare-metal devices, we need to build abstractions for
the core operations involved in any device interaction—namely, reading memory, writing
memory, and executing code from a specified address (detailed in Figure 9).

With the ability to read, write, and execute memory, we can define the mechanics of
MicroDeviceAPI and MicroModule in terms of these primitives.

Note that this interface abstracts over the device communication protocol, so although
OpenOCD is currently the standard interface, when a new, faster protocol becomes

13

TVM Devices

CPU

GPU

µDevice

…

MicroDeviceAPI

AllocDataSpace

FreeDataSpace

CopyDataFromTo

MicroModule

CreateMicroMod

GetFunction

MicroSession

LoadBinary

AllocateInSection

LowLevelDevice

Read

Write

Execute

GetFunction

DeallocateInSection

TVM API Call

GetLowLevelDevice

Figure 8: Diagram showing how TVM API calls flow through the µTVM runtime and
ultimately reach the device

class LowLevelDeviceAPI {
virtual void Read(TargetPtr addr,

void* buffer,
size_t num_bytes) = 0;

virtual void Write(TargetPtr addr,
void* buffer,
size_t num_bytes) = 0;

virtual void Execute(TargetPtr func_addr,
TargetPtr breakpoint_addr) = 0;

};

Figure 9: The C++ LowLevelDeviceAPI interface. Providing an implementation for the
three methods above is all that is required to satisfy this component of the µTVM interface.
The TargetPtr data type is a wrapper around a raw pointer, so the type system prevents
us from accidentally using host pointers as device pointers and vice versa.

14

widely available, µTVM is future-proof in this respect, as an implementation of the
LowLevelDeviceAPI for this new protocol serves as a drop-in replacement.

To date, there are two low-level device implementations, which we now describe.

HostLowLevelDeviceAPI

The host low-level device API is primarily for debugging purposes, because bare-metal
devices often have uninformative error messages and limited debugging support. By using
this device, we can at least rule out device communication as the problem when anything
goes wrong.

The implementation of this low-level device simply allocates a region of memory on the
host machine and allows for reading, writing, and execution just by using C++ operations
(reading from addresses, writing to addresses, and calling functions, respectively).

OpenOCDLowLevelDeviceAPI

The OpenOCD low-level device API is the instance we care about for most real-world
devices. As the name suggests, this instance uses OpenOCD, which technically stands
for “Open On-Chip Debugger”, though we’ve abused it for its capabilities in performing
basic read/write/execute operations. To use it, we first connect it to the device, which
it communicates with using the widely-supported JTAG debugging standard. The host
then interfaces with OpenOCD by connecting with a socket and sending commands in
Tcl—a high-level scripting language—over the network. OpenOCD then translates these
Tcl commands into the appropriate JTAG commands (Figure ??). With this design, the
user must have OpenOCD open and configured separately from TVM, which we admit is
not optimal.

The implementations for reading and writing are very simple, because they map directly
onto the read/write interface in OpenOCD . The trickiest functionality to implement is
code execution.

OpenOCD provides an interface for executing code at an arbitrary address, but it
doesn’t wait for the device to finish executing the function before returning. Even so, if we
hit the return statement in main, what happens? We have nowhere to return to on the
device, so we want to transfer control back to the host, rather than letting the device spin
indefinitely. To achieve this transfer of control, we use OpenOCD’s breakpoint interface.
To create a breakpoint, you specify a memory address, and a breakpoint is set there. Now,
upon execution, the device will halt when it reaches that address, and control returns to
the host.

MicroSession

The micro session class acts as the orchestrator of interactions with the device. The session
handles both allocation of binaries in the device’s memory and execution of functions with

15

http://openocd.org/
https://en.wikipedia.org/wiki/JTAG
https://www.tcl.tk/about/index.html

given arguments (including the encoding of those arguments on the device).
A simple linear allocator is used for every ELF section (i.e., text, data, bss, etc.) to

remap sections on binaries to the allocated regions on the device.
Encoding of arguments is done by matching on the type of each argument and dispatching

to the appropriate encoder for that type. Each encoder writes each field of the argument
into a host-side temporary buffer, accounting for both the endianness of the target device
and for any data alignment restrictions. Once all arguments have been encoded in this
buffer, the buffer is flushed to the arguments section of the device.

MicroDeviceAPI

The micro-device API extends the already-existing DeviceAPI class in TVM. The purpose of
the general device API class is to provide device-agnostic memory management primitives.
The micro-device API achieves this by using methods in the low-level device API in its
implementation.

One of the key constraints we needed to consider when designing µTVM was memory.
Most bare-metal devices are very limited on memory, and because of this, we arrived at a
somewhat peculiar implementation for allocating memory.

With any dynamic allocation scheme, there is the space overhead of maintaining the
bookkeeping data structures, but there is also overhead for the procedures themselves that
manipulate these data structures. In order to avoid wasting precious device space, the host
manages the memory on the device. One of the implications of this is that tensors can
be passed around as usual on the host machine, but the tensor’s data field is a pointer
to device memory. Currently, we use a linear allocator for the sake of simplicitly, but we
intend to implement more complex memory management in the future.

With this API implemented, standard TVM objects can now be allocated and passed
around, with the actual data being stored on a bare-metal device.

Tensor Creation

When a tensor is created, the call flows to the MicroDeviceAPI, and space is allocated
on the device via AllocDataSpace. The allocation call then flows to AllocateInSection,
where the section is the heap, and the session’s allocation bookkeeping is updated (it’s
important to note there is no interaction with the device as a result of this call). With
space allocated for the tensor, its data is then loaded onto the device via CopyDataFromTo,
which calls GetLowLevelDevice to get access to the Write. Once Write finishes, the user
receives a TVM tensor object storing metadata (address of data on device, data type, and
shape) for the tensor that is now resident in device memory.

Since multiple sessions can be open simultaneously, but only one session can be active
at any given moment, µTVM tensors additionally store a smart pointer to the session they

16

belong to. This prevents premature session destruction when a context switch from one
session to another occurs, because the reference count to the session does not drop to zero.

MicroModule

The micro module class allows an ELF object file to be loaded, linked, and then dumped
onto the device by using a micro session. Once the linked binary is dumped, TVM
PackedFuncs that map to functions on the device can be created and called. When they
are called, the address of the function and the arguments used to call it are passed to the
micro session, so the arguments can be encoded and written onto the device.

While the micro-device API allows us to create objects in TVM, the micro module class
allows us to load functions from a file and to call those functions, as if they were any other
function in TVM.

Module Creation

Following Figure 8, when a module is created, the call flows to CreateMicroMod, which
routes to LoadBinary. LoadBinary then allocates space for each section of the binary and
dumps each section of the binary into its allocated slot (according to the memory layout in
Figure 10). In the now-loaded binary, function pointers corresponding to utility functions
(e.g., scratchpad allocation/deallocation) are patched to point to implementations in the
device runtime. The mapping from function symbols to their device addresses are then
stored, so functions can later be retrieved by name via TVM’s GetFunction API call. An
overview of this process can be seen in Figure 10.

Function Calls

The micro module class further wraps the low-level Execute method by handling the
sending of arguments. This functionality is implemented in the micro module, because
it has access to the binary and can search for symbols (e.g., function names and global
variables).

By the time we’re sending arguments to the device, whatever tensors we’re operating
on will have already been allocated in the device’s memory, so all we need to do is tell the
device where the arguments are.

Since the runtime uses lazy execution, instead of eagerly serializing argument metadata
and UTVMTask data, we accumulate function call metadata on the host side, before flushing
it to the device.

When flushing, the argument tensors for each task are serialized in a way that conforms
to the TVMValue struct and the argument tensors’ type IDs are serialized, then both are
written contiguously in the arguments section. With all of the argument data structures
now on the device, UTVMTask structs (Figure 6) are constructed that correspond to each of

17

CreateMicroMod

Cross-Compilation

func.c gcc ldfunc.o remapped
func.o

TVM IR

LowLevelDevice
Write(dev_addr, binary)

MicroModule

C Codegen

RAM

Arguments

Workspace

Stack

Conv2D

ReLU

…

Runtime

Code

Heap

Data0 Kernel0

Output0 Output1

…

Figure 10: (Left) Sequence of steps involved in creating a MicroModule (Right) The
µTVM device memory layout in RAM

the accumulated tasks, the array of tasks is serialized to utvm_tasks, and utvm_num_tasks
is set to the number of tasks written (Figure 11).

Once the tasks have been written, we use the Execute method in LowLevelDeviceAPI
with the address of UTVMInit as the function address and UTVMDone as the breakpoint
address. Recall that UTVMInit performs device-specific initialization (e.g., enabling the
floating point unit or setting the stack pointer register) before calling into UTVMMain.

In order to retrieve the return value, we don’t need to do anything special, because we
currently require functions to be written in destination-passing style.

Evaluation

With this infrastructure in place, we sought to answer the following questions:

1. Is µTVM truly device-agnostic?
2. How much effort is required to experiment with optimizations using µTVM?

To evaluate (1), we ran our experiments on three diverse targets:

• An Arm STM32F746NG development board, featuring a Cortex-M7 processor
• Spike, a functional RISC-V ISA simulator

18

https://www.st.com/en/microcontrollers-microprocessors/stm32f746ng.html
https://github.com/riscv/riscv-isa-sim

volatile UTVMTask utvm_tasks[TASK_QUEUE_SIZE] = {};
volatile uint32_t utvm_num_tasks = 0;

// Called by UTVMInit, after device-specific initialization
// is finished.
void UTVMMain() {

for (int i = 0; i < utvm_num_tasks; i++) {
utvm_tasks[i].func(

(void*) utvm_tasks[i].arg_values,
(void*) utvm_tasks[i].arg_type_codes,
utvm_tasks[i].num_args);

}
UTVMDone();

}

// Dummy function to signal execution is finished for device
// backends which require breakpoints.
void UTVMDone() {}

Figure 11: Simplified version of the µTVM on-device runtime. When task execution is
forced, all accumulated arguments and task structs are written into the arguments section
and utvm_tasks, respectively. Then, a breakpoint is set at the location of the symbol
UTVMDone (retrieved using the cross-compiler binutils). Device execution then begins at
UTVMMain, and when execution finishes, the breakpoint will be triggered, and control will
be returned to the host.

19

• The µTVM x86 emulated device, which creates a memory arena on the host machine
that is interfaced with as if it is a bare-metal device

To evaluate (2), we explored optimizations for the Arm board that give the biggest
bang for the buck. For single-operator comparisons, we only consider convolution, since it
dominates the run time.

As a point of comparison, we pulled a quantized CIFAR-10 CNN from a tutorial by
Arm. In the tutorial, CMSIS-NN (a library of highly optimized kernels by Arm experts)
was used as the operator library, which allowed us to directly compare the results of µTVM
with CMSIS-NN on the Arm board.

Figure 12: Diagram of CIFAR-10 CNN

Methodology

In our experiments, we used a fork of November 2019 TVM (commit 2571449), version
5.6.0 of CMSIS-NN (commit b5ef1c9) and version 8 of Arm’s GCC toolchain (revision
273027). The host machine used in our experiments ran Ubuntu Linux 18.04.4 LTS and
sported an AMD Ryzen Threadripper 2990WX 32-Core Processor with 62GB of RAM. All
evaluation scripts for this thesis are contained in a GitHub repository.

Single Operator

The out-of-the-box (untuned) performance of µTVM isn’t great. There are, however, generic
optimizations that we can apply to close the gap. On most hardware, unrolling loops,
reordering loop axes, and tiling data layouts can give significant performance improvements
when tuned carefully. We implemented these optimizations by defining a TVM schedule,
which we then autotuned, achieving the “µTVM Non-SIMD Tuned” results in Figure 14.

20

https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/image-recognition-on-arm-cortex-m-with-cmsis-nn/single-page
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/image-recognition-on-arm-cortex-m-with-cmsis-nn/single-page
https://arm-software.github.io/CMSIS_5/NN/html/index.html
https://github.com/weberlo/tvm/tree/utvm-blogpost
https://github.com/weberlo/microtvm-blogpost-eval
https://github.com/weberlo/microtvm-blogpost-eval/blob/master/python/micro_eval/micro_topi/cortex_m7/conv2d/direct.py#L90

125

55

35

Ti
m

e
(m

s)

0

25

50

75

100

125

µTVM Untuned µTVM Tuned CMSIS-NN

RGB Int-8 Conv2D

321

122

84

50

Ti
m

e
(m

s)

0

100

200

300

400

µTVM Untuned µTVM Non-SIMD
Tuned

µTVM Direct SIMD
Tuned

CMSIS-NN

Fast Int-8 Conv2D

Figure 13: 2D convolution comparisons with CMSIS-NN on an Arm STM32F746NG. (Left)
Data shape is (N=1, H=32, W=32, C=3) and kernel shape is (H=5, W=5, I=3, O=32). Cor-
responds to the 1st convolution in the CNN. (Right) Data shape is (N=1, H=8, W=8, C=32)
and kernel shape is (H=5, W=5, I=32, O=64). Corresponds to the 3rd convolution in the
CNN.

Arm-Specific Optimizations

With CMSIS-NN, the first convolution maps to their RGB convolution implementation
(specifically for usage in input layers) and the latter two map to their “fast” convolution
implementation. Our performance was already competitive with CMSIS-NN’s RGB convo-
lution after generic optimizations, so we focused on improving our comparison with their
fast convolution.

After further analysis, we realized they were achieving significant speedups via single-
instruction multiple-data (SIMD) operations offered by the Cortex-M7. Following the
strategy detailed in their paper [12], we implemented a general matrix multiplication
(GEMM) microkernel that uses these SIMD intrinsics. Then, using TVM’s tensorization
mechanism, we injected our microkernel in the core of the schedule and “autotuned around
it”. Though first-class support for the intrinsics in TVM’s code generation facilities is the
best move in the long run, tensorization provided a “quick-and-dirty” solution to supporting
SIMD.

Tensorization works by defining a microkernel that can be inserted into the innermost
loop of a TVM operator. Using this mechanism, adding SIMD support for the Arm board
was as simple as defining a microkernel in C (found here) that mirrored the implementation
in their paper. We defined a schedule that used this microkernel (found here), autotuned
it, achieving the “µTVM SIMD tuned” results in Figure 14.

While we were able to use the SIMD microkernel for direct convolution, CMSIS-NN
uses what they call “partial im2col” as their implementation strategy. Im2col is a technique
for converting 2D convolution into GEMM, a great performance win when highly optimized
GEMM subroutines are available [1]. Their variation of im2col offers a tradeoff between
performance and memory usage. Instead of manifesting the entire im2col matrix at once,
partial im2col generates only a few columns at a time. Then, each batch can be sent to a

21

https://github.com/ARM-software/CMSIS_5/blob/develop/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_RGB.c
https://github.com/ARM-software/CMSIS_5/blob/develop/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast.c
https://github.com/ARM-software/CMSIS_5/blob/develop/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast.c
https://github.com/weberlo/microtvm-blogpost-eval/blob/master/python/micro_eval/micro_topi/cortex_m7/micro_kernel/gemm.py#L101
https://github.com/weberlo/microtvm-blogpost-eval/blob/master/python/micro_eval/micro_topi/cortex_m7/micro_kernel/gemm.py#L101
https://docs.tvm.ai/tutorials/language/tensorize.html
https://github.com/weberlo/microtvm-blogpost-eval/blob/master/python/micro_eval/micro_topi/cortex_m7/micro_kernel/gemm.py
https://github.com/weberlo/microtvm-blogpost-eval/blob/master/python/micro_eval/micro_topi/cortex_m7/conv2d/direct_simd.py

SIMD GEMM function.
Our hypothesis was that, among other optimizations, we could find the optimal batch

size via autotuning. In practice, we found partial im2col to be significantly slower than our
direct convolution implementation, so we don’t include it in the rest of our results.

End-To-End

After exploring optimizations for convolution, we set out to measure their effects on end-
to-end performance. For the Arm board, we collected untuned results, results that were
tuned without any use of SIMD, results that were tuned with SIMD, and results using
CMSIS-NN. For Spike and the emulated host device, we only collected untuned results and
generic tuned results.

On the Arm STM32-series board, we were able to improve performance by over 3×
compared to the initial untuned operators, and we achieved results much closer to CMSIS-
NN. Additionally, we were able to significantly improve performance on Spike and the x86
emulated device. Though the RISC-V and x86 numbers don’t mean much, they show
we can use the same infrastructure (µTVM) to optimize performance on vastly different
architectures.

Discussion

In this section, we discuss performance optimizations we could pull from CMSIS-NN and
TVM-specific optimizations we could implement to make µTVM (and TVM overall) more
competitive.

Batch expansion of int8 weights into int16, to cut down on duplicate expan-
sion for SIMD, would drastically improve performance. To compare, CMSIS-NN’s
arm_convolve_HWC_q7_fast implementation is able to simultaneously use SIMD
to expand from int8 to int16 and generate the partial im2col buffer, by calling
arm_q7_to_q15_reordered_no_shift. However, with our GEMM microkernel, we expand
weights inside of the microkernel, rather than factoring out this expansion.

A similarly valuable optimization is reordering-aware kernels. As mentioned
before, CMSIS-NN uses arm_q7_to_q15_reordered_no_shift , which is faster than
arm_q7_to_q15_no_shift, but the mechanics of the SIMD expansion intrinsic used in
the former leaves the data in a jumbled format (see Figures 3 and 4 of [12]). However,
arm_nn_mat_mult_kernel_q7_q15_reordered, is written to accomodate inputs that have
been reordered by this intrinsic by reordering indexing calculations accordingly, saving a
considerable amount of time.

Direct convolution being faster than partial im2col came as quite a surprise to us,
and we believe it stems from a number of small performance problems that add up. One
problem is that present-day TVM has trouble reasoning through reshapes and tensorization,

22

https://github.com/ARM-software/CMSIS_5/blob/5db489d147aa8a14beebd33a2eb973b1b8f3fead/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast.c#L140
https://github.com/ARM-software/CMSIS_5/blob/5db489d147aa8a14beebd33a2eb973b1b8f3fead/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_reordered_no_shift.c#L77
https://github.com/weberlo/microtvm-blogpost-eval/blob/3d37475d053c801c8e80a3f440ab57c5602a5878/python/micro_eval/micro_topi/cortex_m7/micro_kernel/gemm.py#L101
https://github.com/ARM-software/CMSIS_5/blob/5db489d147aa8a14beebd33a2eb973b1b8f3fead/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_reordered_no_shift.c#L77
https://github.com/ARM-software/CMSIS_5/blob/5db489d147aa8a14beebd33a2eb973b1b8f3fead/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_no_shift.c#L58
https://github.com/ARM-software/CMSIS_5/blob/5db489d147aa8a14beebd33a2eb973b1b8f3fead/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15_reordered.c#L40

612

241
184

126

Ti
m

e
(m

s)

0

200

400

600

800

µTVM Untuned µTVM Non-SIMD
Tuned

µTVM SIMD Tuned CMSIS-NN

CIFAR-10 Int-8 CNN on Arm Cortex-M7

1010

466

Ti
m

e
(m

s)

0

250

500

750

1000

1250

µTVM Untuned µTVM Tuned

CIFAR-10 Int-8 CNN on Spike

46

6

Ti
m

e
(m

s)

0

10

20

30

40

50

µTVM Untuned µTVM Tuned

CIFAR-10 Int-8 CNN on Emulated x86

Figure 14: int8-quantized CIFAR-10 CNN results. (Top) Untuned vs. tuned vs. CMSIS-
NN results on Arm STM32F746NG (Bottom Left) Untuned vs. tuned results on Spike, a
RISC-V ISA simulator (Bottom Right) Untuned vs. tuned results on µTVM’s emulated
x86 host device

23

which means we can’t inline reshapes near the GEMM microkernel in the partial im2col
schedule, and we get unnecessary workspace allocs and tensor copies.

We also may have achieved better tuning results if we enabled direct support for Arm’s
SIMD intrinsics, rather than using tensorization, since tensorization only allows us to
tune the size of the matmul microkernel, but we can’t tune internal parameters at all.
Finer-grained tuning could be quite important, as partial im2col relies on a good GEMM
implementation.

Another micro-optimization in CMSIS-NN’s convolution kernel is splitting the convolu-
tion into 3×3 tiles, allowing fewer padding checks in the non-corner tiles (and no padding
checks in the center tile).

An additional benefit of implementing µTVM in TVM is that in cases such as this
where an external operator that surpasses TVM’s performance is readily available, that
operator can be plugged in directly via TVM’s Bring Your Own Codegen framework.

Future Work

Self-Hosted Runtime: The Final Frontier

Figure 15: The envisioned µTVM optimization and deployment pipeline

While end-to-end results are already obtainable with the current runtime, deployment
of these models in a standalone capacity is currently still on our roadmap. As mentioned
in earlier sections, the AutoTVM-oriented runtime relies on the host to allocate tensors
and to schedule function execution. However, to be useful at the edge, we need a pipeline
through µTVM that generates a single binary to be run on a bare-metal device. Users
could then easily integrate fast ML into their applications by including this binary.

Self-hosted runtime aside, there are plenty of other interesting research avenues to
pursue.

Thus far, we’ve used the vanilla AutoTVM algorithm, but it would be interesting to
make some domain-specific tweaks to autotuning. For example, setting a desired operator

24

https://github.com/weberlo/microtvm-blogpost-eval/blob/3d37475d053c801c8e80a3f440ab57c5602a5878/python/micro_eval/micro_topi/cortex_m7/conv2d/partial_im2col.py#L154
https://github.com/weberlo/microtvm-blogpost-eval/blob/3d37475d053c801c8e80a3f440ab57c5602a5878/python/micro_eval/micro_topi/cortex_m7/conv2d/partial_im2col.py#L154
https://docs.tvm.ai/dev/relay_bring_your_own_codegen.html

size and penalizing implementations that surpass the desired size would help to generate
leaner binaries.

To cover the lowest common denominator of edge devices, we have focused on targeting
the JTAG protocol for facilitating device interaction. However, JTAG is a protocol designed
for debugging purposes. Futhermore, communicating with OpenOCD using Tcl commands
is also quite expensive. While the OpenOCD/JTAG combo have worked for prototyping
purposes, we believe there is an opportunity here to design a leaner communication protocol
that obviates the need for this combo and that scales and unifies interaction with bare-
metal devices more effectively. TCP/IP, for example, is not a desirable protocol, as the
runtime required to implement the protocol could itself exceed the memory bounds of most
target microcontrollers. Conveniently, when this hypothetical new protocol comes, µTVM
is futureproof in this respect, because the LowLevelDeviceAPI abstracts over the device
communication protocol. Although OpenOCD is currently the standard interface, all that’s
required to support this new protocol is an implementation of the LowLevelDeviceAPI,
and it would then serve as a drop-in replacement.

Conclusion

In this thesis, we’ve described µTVM, an extension to TVM that targets bare-metal devices.
µTVM makes novel use of existing low-level hardware tools and serves as a platform for
performing research. . . ON THE EDGE!

References

[1] Chellapilla, K., Puri, S., and Simard, P. Y. High performance convolutional
neural networks for document processing.

[2] Chen, T., Moreau, T., Jiang, Z., Shen, H., Yan, E. Q., Wang, L., Hu, Y.,
Ceze, L., Guestrin, C., and Krishnamurthy, A. TVM: end-to-end optimization
stack for deep learning. CoRR abs/1802.04799 (2018).

[3] Chen, T., Zheng, L., Yan, E. Q., Jiang, Z., Moreau, T., Ceze, L., Guestrin,
C., and Krishnamurthy, A. Learning to optimize tensor programs. CoRR
abs/1805.08166 (2018).

[4] Courbariaux, M., Bengio, Y., and David, J.-P. Training deep neural networks
with low precision multiplications.

[5] Elango, V., Rubin, N., Ravishankar, M., Sandanagobalane, H., and Grover,
V. Diesel: Dsl for linear algebra and neural net computations on gpus. In Proceedings
of the 2Nd ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages (New York, NY, USA, 2018), MAPL 2018, ACM, pp. 42–51.

25

[6] Gopinath, S., Ghanathe, N., Seshadri, V., and Sharma, R. Compiling kb-sized
machine learning models to constrained hardware. https://www.microsoft.com/en-
us/research/uploads/prod/2018/10/paper.pdf.

[7] Gupta, C., Suggala, A. S., Gupta, A., Simhadri, H. V., Paranjape, B.,
Kumar, A., Goyal, S., Udupa, R., Varma, M., and Jain, P. Protonn: Com-
pressed and accurate knn for resource-scarce devices. https://www.microsoft.com/en-
us/research/uploads/prod/2017/06/protonn.pdf.

[8] Gustafson, and Yonemoto. Beating floating point at its own game: Posit arithmetic.
Supercomput. Front. Innov.: Int. J. 4, 2 (June 2017), 71–86.

[9] Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y.
Quantized neural networks: Training neural networks with low precision weights and
activations. The Journal of Machine Learning Research 18, 1 (2017), 6869–6898.

[10] Johnson, J. Rethinking floating point for deep learning, 2018.

[11] Kumar, A., Goyal, S., and Varma, M. Resource-efficient machine learning in 2 kb
ram for the internet of things. http://manikvarma.org/pubs/kumar17.pdf.

[12] Lai, L., Suda, N., and Chandra, V. CMSIS-NN: efficient neural network kernels
for arm cortex-m cpus. CoRR abs/1801.06601 (2018).

[13] Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., and Ama-
rasinghe, S. Halide: A language and compiler for optimizing parallelism, locality,
and recomputation in image processing pipelines. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Implementation
(New York, NY, USA, 2013), PLDI ’13, ACM, pp. 519–530.

[14] Roesch, J., Lyubomirsky, S., Kirisame, M., Weber, L., Pollock, J., Vega,
L., Jiang, Z., Chen, T., Moreau, T., and Tatlock, Z. Relay: A high-level
compiler for deep learning, 2019.

[15] Sahaya Loui, M., Azad, Z., Delshadtehrani, L., Gupta, S., Warden, P.,
Reddi, V., and Joshi, A. Towards deep learning using tensorflow lite on risc-v.

[16] Shen, H., Roesch, J., Chen, Z., Chen, W., Wu, Y., Li, M., Sharma, V.,
Tatlock, Z., and Wang, Y. Nimble: Efficiently compiling dynamic neural networks
for model inference, 2020.

[17] Soudry, D., Hubara, I., and Meir, R. Expectation backpropagation: Parameter-
free training of multilayer neural networks with continuous or discrete weights. In
Proceedings of the 27th International Conference on Neural Information Pro-
cessing Systems - Volume 1 (Cambridge, MA, USA, 2014), NIPS’14, MIT Press,
p. 963–971.

26

[18] Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., DeVito, Z., Moses,
W. S., Verdoolaege, S., Adams, A., and Cohen, A. Tensor comprehensions:
Framework-agnostic high-performance machine learning abstractions, 2018.

27

	Acknowledgements
	Introduction
	Background
	Bare-Metal Devices
	Deep Learning Frameworks
	Low-Level Tensor Compilers
	TVM
	AutoTVM

	Design
	Device Sessions
	Module Creation
	Tensor Creation
	Function Calls
	Strict Execution
	Lazy Execution

	AutoTVM with MicroTVM
	The Hosted Graph Runtime

	Implementation
	LowLevelDeviceAPI
	HostLowLevelDeviceAPI
	OpenOCDLowLevelDeviceAPI

	MicroSession
	MicroDeviceAPI
	Tensor Creation

	MicroModule
	Module Creation
	Function Calls

	Evaluation
	Methodology
	Single Operator
	Arm-Specific Optimizations

	End-To-End
	Discussion

	Future Work
	Self-Hosted Runtime: The Final Frontier

	Conclusion

