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Abstract

A neural surrogate of a program is a neural
network that mimics the behavior of a program.
Researchers have used these neural surrogates
to automatically tune program inputs, adapt
programs to new settings, and accelerate compu-
tations. Researchers traditionally develop neural
surrogates by training on input-output examples
from a single program. Alternatively, language
models trained on a large dataset including many
programs can consume program text, to act as
a neural surrogate. Using a language model to
both generate a surrogate and act as a surrogate,
however, leading to a trade-off between resource
consumption and accuracy. We present neural
surrogate compilation, a technique for producing
neural surrogates directly from program text with-
out coupling neural surrogate generation and exe-
cution. We implement neural surrogate compilers
using hypernetworks trained on a dataset of C
programs and find that they produce neural surro-
gates that are 1.9-9.5x as data-efficient, produce
visual results that are 1.0-1.3x more similar to
ground truth, and train in 4.3-7.3x fewer epochs
than neural surrogates trained from scratch.

1. Introduction

A neural surrogate is a neural network that models a subset
of the observable behavior of a program (Renda et al., 2021).
Neural surrogates have been used to automatically configure
image signal processing units and CPU simulators (Tseng
et al., 2019; Renda et al., 2020), improve the accuracy
of manufacturing and physics simulations (Tercan et al.,
2018; Kustowski et al., 2020), accelerate the computer
architecture design process (Ipek et al., 2006), and
accelerate computations in signal processing, robotics,
3D games, compression, machine learning, and image
processing (Esmaeilzadeh et al., 2012a).
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Neural Surrogate Training. The research community
has developed a variety of techniques to train neural surro-
gates. The traditional approach is to train a neural surrogate
of a single program by collecting and curating a dataset of
input-output pairs and then training a neural network to pre-
dict the program’s output given an input (Renda et al., 2021).

Another point in the spectrum is to amortize the cost of
training neural surrogates by training a universal neural
surrogate: a neural network that directly consumes the text
of a program and predicts the program’s output for a given
input (Zaremba & Sutskever, 2015; Nye et al., 2021; Gu
et al., 2024). A key benefit of universal neural surrogates
is that one only needs to create a dataset once. Once trained,
a universal neural surrogate can act as the neural surrogate
of a given program without the need to curate a dataset of
program-specific, input-output pairs.

However, universal neural surrogates necessarily use the
same model to process the program text as is used to predict
the program output, and accurate prediction may require
multiple forward passes (Nye et al., 2021; Wei et al., 2022).
These limitations pose challenges for deploying such a
model as a neural surrogate because small models may
not be able to emulate complex programs (Zaremba &
Sutskever, 2015) and large models (OpenAl et al., 2023)
may not be able to execute in the resource-constrained
environments where neural surrogates have been used (Es-
maeilzadeh et al., 2012a; Mendis, 2020; Munk et al., 2022).

Our Approach: Neural Surrogate Compilation. To
maintain the benefits of universal neural surrogates while
bypassing the above limitations, we propose to use a neural
surrogate compiler. A neural surrogate compiler is a
system that accepts a program’s text as input and produce
an initial neural surrogate of the program, which can vary
in behavioral quality. Similarly to a traditional compiler,
a neural surrogate compiler requires a significant upfront
cost that is amortized over the generation of initializations
for many neural surrogates. We demonstrate in this work
that when compared to the traditional approach of training
a neural surrogate from a random initialization, neural
surrogates produced by neural surrogate compilers can be
finetuned to closely mimic the behavior of the program at a
lower cost, as measured in data efficiency and training time.
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Figure 1: Neural surrogate development with neural surrogate compilation

Contributions. To implement a neural surrogate com-
piler, we adapt the BERT architecture (Turc et al., 2019)
into a hypernetwork—a hypernetwork is a neural network
that produces the parameters of another neural network (Ha
et al., 2017). We name the resulting architecture COMPNET.

To train neural surrogate compilers, we develop EXESTACK,
a dataset of 69,083 executable C programs collected from
The Stack (Kocetkov et al., 2022), a large corpus of source
code. To train COMPNETs, we refine EXESTACK into
EXESTACKCPN, a dataset of 37,772 programs that is
compatible with our chosen hypernetwork architecture. We
then evaluate neural surrogates initialized via COMPNET
on EXESTACKCPN and PARROTBENCHCPN, the latter
being a set of benchmarks from prior work in approximate
computing (Esmaeilzadeh et al., 2012a).

Surrogates trained from COMPNET initializations achieve
1.9-9.5x lower error than neural surrogates trained from
scratch, with the same amount of data; on a color quanti-
zation task, they produce images that are 1.0-1.3x more
similar to images produced by an exact implementation
than images produced by surrogates trained from random
initialization; and they achieve a target error with 4.3-7.3 x
fewer epochs than neural surrogates trained from scratch.

2. Neural Surrogate Compilation

A neural surrogate compiler is a system that is specialized
to a family of neural surrogate architectures to accept
a program’s text as input and produce an initial neural
surrogate of the program. Figure 1 presents the neural
surrogate compilation workflow alongside the traditional
workflow for developing a neural surrogate. In a traditional
neural surrogate development workflow, one collects
training data (), trains the neural surrogate until its error
meets the desired threshold (@), and then uses it in place
of the original program (@). Neural surrogate compilation

(@) introduces a new, initial step in the neural surrogate
compilation workflow in which a neural surrogate compiler
maps the program text to a neural network initialization
for use in the training of the neural surrogate. The typical
strategy to train a neural surrogate is through supervised
learning of a neural network with a curated dataset of
input-output pairs from the program (Renda et al., 2021).

In this section, we formalize the problem of efficiently
training a neural surrogate and introduce a new approach
to solving this problem using a neural surrogate compiler.

2.1. The Efficient Surrogate Training Problem

We first formalize the problem of training a neural surro-
gate. We assume we are given a program text p : P that
denotes a function [p] : Z, — O,,! where P is the space
of programs under consideration, Z,, is the type of values p
accepts as input and O, is the type of values p produces as
output. We also assume a target neural surrogate architecture
a:Rd— 7, — Oy, which takes a set of parameters  : R4
and produces a surrogate function from Z, to O,. The goal
is to find a set of parameters 6 : R? such that the neural
surrogate a(6) : Z, — O, has low approximation error:

Vi I,.a(0) (@) ~ [p](3)
To measure the quality of surrogate outputs, we use a loss
function ¢ : O), x O, = R that measures the difference
between the output of the program and the output of the
surrogate. To measure overall surrogate quality, we use the
expected loss over a distribution of inputs:

L(a(0),p) = Ei~z, [((a(0) (i), [p] (1))] (1)

As with most learning problems, a challenge in training
neural surrogates is that the error of a surrogate depends
on the budget dedicated to collecting training data (input-
output pairs of the program) and the number of epochs
used to train the surrogate. We formalize these costs by
defining a training procedure t, : P x Ryg x N — R?
for a given surrogate architecture a as a random function
that takes program text p, a training data budget b : R>,
and training time budget n : R>( and produces a set of
parameters ¢ : R? for the surrogate.

We then define the efficient surrogate training problem
as finding a training procedure ¢, for a given program p,
architecture a, sample budget b, training time budget n,
and loss function ¢ that minimizes the expected loss of the
resulting surrogate:

argtmin Egrt, (p,b,m) [L£(a(0), p)],

"[1:P = (Zy — Op) is notation used in programming
language theory to refer to the function a program implements.
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Figure 2: System diagram describing the COMPNET architecture, comprising five phases: (A) tokenizing an input program,
(B) embedding the program using a BERT encoder, (C) regressing the embeddings to a parameter vector using a parameter
head, (D) parameterizing a neural network using the parameter vector, and (E) executing the neural network surrogate.

The standard approach to training a neural surrogate is to
randomly initialize the parameters of the surrogate and then
use a gradient-based optimization algorithm to minimize
the loss against a dataset of input-output pairs from the
program (Renda et al., 2021).

2.2. Neural Surrogate Compilation

A neural surrogate compiler is a system ¢ : (p : P) — R%
that accepts program text p and produces parameters
6§ € R% for a neural surrogate architecture ap depending
on the program p. We use a neural surrogate compiler to
solve the efficient surrogate training problem.

We formalize the development of a neural surrogate
compiler as an optimization problem. The goal is to develop
a system ¢ such that for every program p, the surrogate
f = ap(¢(p)) can be trained efficiently. Optimizing for
a system that generates surrogates that can be trained
efficiently is challenging. As a simple proxy, we optimize
for a system that generates surrogates that achieve low loss:

argmin E,p [ﬁ(ap (6(p)), p)]-
peP—R?

3. COMPNET

The COMPNET architecture is an implementation of a
neural surrogate compiler using hypernetworks. We explain
the architecture, how to train it, then how to extract neural
surrogates from its outputs.

3.1. Architecture

Figure 2 presents the design of a COMPNET. A COMP-
NET accepts program text p : P as input and produces
parameters # € R for a neural surrogate architecture
a : R* - T — O with as many inputs as the largest

architecture one wishes to compile to and a single output.
We call this architecture a covering architecture.

@ First, COMPNET tokenizes an input program (), re-

sulting in a sequence of tokens () including the distin-
guished BERT classification token [CLS].

COMPNET then uses a BERT encoder (Devlin et al.,
2019) to embed the sequence of tokens, resulting in an em-
bedding per token. The output of this step is the embedding
of the classification token (); COMPNET discards the
embeddings of the other tokens.

@ Next, COMPNET uses a parameter head, implemented
as a single linear layer, to map the classification token em-
bedding to a neural surrogate parameter vector ().

@ Then, COMPNET interprets the vector of parameters
as the weights and biases of the covering architecture. The
output of this step is a neural surrogate of the input program.

(E) Finally, COMPNET executes the neural surrogate with
the interpreted parameters on a program input () to pro-
duce a prediction of the program output (@).

3.2. Training

Training a COMPNET requires a dataset of programs and
input-output pairs for each program. Note that this dataset
is not considered as part of the budget in the efficient
surrogate training problem, since it is amortized over all
programs the COMPNET is used to compile.

Each step of training proceeds by selecting a batch of pro-
grams and input-output pairs for those programs, generating
neural surrogate parameters for each program, interpreting
the neural surrogate parameters as parameters for the
covering architecture, executing each neural surrogate with
the batch of inputs, then calculating the loss between the
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#define SQUARE(x) ((x)*(x)) i :
double f (double t) {
double f (double t) { H return 123 * ((t)*(t));
return 123 * SQUARE (t) ; : }
}
float add(
float add( float x, float y) {
float x, float y) { return x + y;
return x + y; : }
} :
double head(double* xs) {
double head(double* xs) { return *xs;
return *xs; }
} >
L int cast(float x) {

int cast(float x) {
return (int) x; : }

return (int) x;

}
float call g(float t) {

float call_g(float t) { return g(sin(t));

return g(sin(t)); }
}
double uniform() {
double uniform() { : return rand() / 21..47;
return rand() / RAND_MAX; }
}
float add(
float add( float x, float y
float x, float y ){ return x+y; }

){ return x+y; }

double f (double t) {
return 123 * ((t)*(t));
}

>J

float add(
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}
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double head(double* xs) {
return *xs;

}

int cast(float x) {
return (int) x;

}
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Figure 3: The EXESTACK generation pipeline. Starting with C source files from The Stack, we apply a sequence of maps
followed by a sequence of filters. The steps are @ run the C preprocessor, @ extract functions from the source file, @
remove functions with pointers in their type signature and nonnumeric functions, @ remove nonexecutable functions and
collect input-output pairs, @ remove nondeterministic functions, and @ remove any duplicate programs. Red “X”s denote
that a function does not pass a filter and green checkmarks denote that a function passes all filters.

neural surrogates’ predicted outputs and the true outputs.
To match the signature of the covering architecture, the
batch of inputs is padded out to match the number of inputs
for the covering architecture (e.g., if a covering architecture
has 9 inputs and a program has 3 inputs, the compiled
architecture for that program is fed 9 inputs). For padding,
we use inputs drawn from the same distribution as the
program inputs (see Appendix N for details).

Backpropagation proceeds as usual, except that one does
not update the parameters of the neural surrogates, since
each generated neural surrogate is ephemeral. Instead, back-
propagation only updates the parameters of the COMPNET.
Appendix E contains additional training details.

3.3. Surrogate Extraction

The output of a COMPNET is parameters for the covering
architecture, which might not match the number of inputs
and outputs of the program being compiled. To adapt
the covering architecture to the target number of inputs,
one finetunes the resulting architecture on data where the
excess inputs are set to zero, allowing one to then remove
the weights in the input layer corresponding to the excess
inputs (see Appendix N for details on this choice). To adapt
the covering architecture to the target number of outputs,
one clones the weights for the single output in the output
layer for each new output that is needed (see Appendix O
for details on this choice). To align the program text with

the training distribution (i.e., single-output programs), one
also modifies the input program to produce a single output
(e.g,. the first output of the original program). When neither
the number of inputs nor the number of outputs matches
the covering architecture, all of the above modifications are
applied in the same finetuning run.

4. EXESTACK

The strategy we presented in Section 3 for learning a neural
surrogate compiler requires a dataset of programs and
input-output examples describing the behavior of each pro-
gram. To meet this requirement, we developed EXESTACK,
a dataset of 69,083 pointer-free, numerical, executable,
deterministic C programs and corresponding input-output
examples. EXESTACK is based on The Stack (Kocetkov
et al., 2022), a dataset of 3 TB of permissively licensed
source code written in various programming languages
scraped from GitHub.

Figure 3 summarizes the process of generating EXESTACK
(see Appendix B for details). The restriction to pointer-free
functions simplifies the EXESTACK generation method-
ology, and yet, a model trained on EXESTACK could still
handle programs using statically-sized data structures
containing numeric data (e.g., arrays), as they can be trans-
formed into functions with a fixed number of arguments.
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Benchmark  Description Train Inputs Test Inputs #Inputs  #Outputs
fft Radix-2 Cooley-Tukey 32,768 random floating point 2,048 random float- 1 2
fast Fourier transform numbers ing point numbers
invk2j Inverse kinematics for 10,000 random (x, y) 10,000random (x,y) 2 2
2-joint arm coordinates coordinates
kmeans k-means clustering 50,000 random (r, g, b) values ~ 220x200 color image 6 1
sobel Sobel edge detector One 512x512 color image 220x200 colorimage 9 1

Table 1: The programs from PARROTBENCH we include in PARROTBENCHCPN (Esmaeilzadeh et al., 2012a).

5. Evaluation

To evaluate the claim that neural surrogate compilation
lowers the development cost of neural surrogates, we
answer the following research questions.

RQ 1: Does a neural surrogate initialized by a COMPNET
converge to a lower test loss than a neural surrogate
initialized randomly, for a fixed training set size?

RQ 2: Does a neural surrogate initialized by a COMPNET
produce better results in an application than a neural
surrogate initialized randomly, for a fixed training set size?

RQ 3: Does a neural surrogate initialized by a COMPNET
converge to a target test loss in fewer epochs than a neural
surrogate initialized randomly?

Our results demonstrate that COMPNETs lead to improve-
ments in data efficiency (Section 5.2), perceptual quality
(Section 5.3), and training time (Appendix J).

5.1. Methodology

To develop and evaluate COMPNETs, we select a BERT
architecture for the neural surrogate compiler and a
multilayer perceptron for the covering architecture, we
produce datasets that COMPNETs can be trained and
evaluated on, we introduce alternative initialization methods
to compare against, and we finetune surrogates produced
by each of the initialization methods.

5.1.1. COMPNET ARCHITECTURE

We use the BERT-Tiny architecture (Turc et al., 2019) for
the BERT encoder in COMPNET, and we adapt a neural
surrogate architecture from Esmaeilzadeh et al. (2012a)
into a covering architecture for this COMPNET.

The architecture used by Esmaeilzadeh et al. (2012a)
is a multilayer perceptron consisting of a single input,
a hidden layer of 4 neurons, another hidden layer of 4
neurons, and 2 outputs, and it uses a sigmoid activation
function. For their evaluation, the authors introduce a suite
of benchmarks, PARROTBENCH, consisting of numerical
programs from various domains. The authors apply their

techniques to the architecture above on a fast Fourier
transform benchmark in PARROTBENCH and achieve a
3.6x speedup. This architecture therefore places a floor
on the system speedup that motivates our investigation of
Parrot, in that the architectures Esmaeilzadeh et al. (2012a)
use for all other programs in PARROTBENCHCPN are at
least as computationally expensive as the one we choose.
We adapt this architecture to take in 9 inputs and produce
1 output, so it can be used to compile programs with up to
9 inputs, and so it is compatible with EXESTACK.

As the COMPNET loss function, we use mean squared error
(MSE) between predicted and true outputs.

5.1.2. DATASETS

We evaluate the effectiveness of COMPNETs on test
programs from EXESTACKCPN and programs from
PARROTBENCHCPN (see Table 1). These datasets are
refinements of EXESTACK and PARROTBENCH that
are compatible with the instantiation of the COMPNET
architecture described above.

EXESTACKCPN. We produce EXESTACKCPN by
applying additional filters to EXESTACK, resulting in
37,772 programs. See Appendix C for details.

From the full set of programs, we create a training, valida-
tion, and testing set using an 80/10/10 split. Each program
has input-output examples, so we additionally create a train-
ing and testing set for these examples using a 50/50 split. In
Sections 5.2 and Appendix J, we evaluate performance on
EXESTACKCPN using 1,000 programs from the testing set.

PARROTBENCHCPN. PARROTBENCHCPN programs
come from a diverse set of application domains, they
are all written in C, each consists of a single function,
and they are numeric in nature, making them suitable
for evaluating COMPNETs. Table 1 shows the programs
in PARROTBENCHCPN, including descriptions of the
computations and input datasets. In Appendix D, we
explain how we chose these programs, we list the program
source, and we explain how we generated input datasets.
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Downcasting Error. The covering architecture we chose
uses a single-precision floating-point data type, but some
programs in EXESTACKCPN use double-precision floating-
point data types. In Appendix M, we explain why compiling
programs with double-precision data types to the single-
precision covering architecture incurs negligible error.

5.1.3. ALTERNATIVE INITIALIZATION METHODS

Besides random initialization, we compare COMPNETS to
two alternative initialization methods: model-agnostic meta
learning (Finn et al., 2017) and pretrained initializations.
Neither initialization method conditions on program text,
so they both result in constant initializations that one uses
for every program. We briefly describe these techniques
here and how we train them, and we provide shorthand for
referencing each initialization method. In Appendix A, we
survey related work in this area in detail.

Model-Agnostic Meta Learning. Model-agnostic meta
learning (MAML) is a meta-learning technique for
producing neural network initializations that can be quickly
finetuned to achieve low error on a given task. One trains
MAML initializations by sampling tasks from some space
of training tasks, finetuning on them, and backpropagating
through the finetuning process into the initialization.

Pretrained Neural Surrogates. A simpler alternative to
MAML is to train a single neural surrogate on the union of
all input-output examples from programs in a dataset such
as EXESTACKCPN. We call initializations trained in this
way pretrained neural surrogates.

Training. We train 3 instances of each initialization
method on EXESTACKCPN training programs using
the same covering architecture as COMPNETs. See
Appendices F, G, N, and O for details on MAML training,
pretrained surrogate training, variable-input support, and
variable-output support, respectively.

Initialization Method Shorthand. We use shorthand
names for each initialization method in figures. We refer
to COMPNETs as “CPN”, MAML as “MAML”, pretrained
surrogates as “PTS”, and random initialization as “RND”.

5.1.4. FINETUNING SURROGATES

Here, we collect the finetuning methodology for surrogates
in this evaluation, including optimization methods, hyper-
parameters, random seed behavior, and how we measure
the improvements achieved by these surrogates.

For all surrogates produced by the initialization methods we
consider, we use the following finetuning methodology. We
use the Adam optimizer with no weight decay, a learning
rate of 0.01, and MSE as the loss function. The only

difference between our methodology and the methodology
of Esmaeilzadeh et al. (2012a) is that we use the Adam
optimizer instead of stochastic gradient descent, and we use
the He initialization method (He et al., 2015)—they do not
specify how they initialize their neural surrogates.

We use 9 trials with different random seeds for every con-
figuration in the experiments of Section 5.2 and Appendix J.
Note that, for COMPNET, MAML, and pretrained surrogate
initializations, changing random seeds only changes the
training data order, since the initialization is deterministic.

For data efficiency and training time, we quantify results
using geometric mean improvements over random initial-
ization. These are only relative measures, so in Appendix L,
we demonstrate the neural surrogates we train achieve
sufficiently low absolute error for downstream applications.

5.2. Data Efficiency Improvements

To assess whether COMPNETSs improve data efficiency, we
use COMPNETS to initialize neural surrogates, finetune on
subsets of training data of various sizes, and then compare
the results to those of other initialization methods. We detail
the methodology of this experiment then present results.

5.2.1. METHODOLOGY

We now describe the configurations we sweep over and the
methodology we use to finetune surrogates.

Experiment Configurations. In this experiment, we
sweep over configurations consisting of a program, a dataset
size, and an initialization method (e.g., a COMPNET). Each
dataset size specifies the percentage of the training data to
train neural surrogates on. We sweep over the following
percentages: {0%,0.1%, 1%, 10%, 100%}.

Dataset Selection. Given a configuration consisting of
a program, a dataset size percentage ¢ € [0,1], and an
initialization method, we select a random subset Dy, of the
training data Dyg,in Of size ¢|Dyin|. We use an 80/20 split
to divide Dy, into train and validation sets Dgyp rain and
Dasub vai- We sample 9 different subsets of this size and use a
different training seed for each subset, yielding 9 trials total.

Finetuning. For each trial, we initialize a neural surrogate
according to the initialization method. We then train on
Daub train for 5,000 epochs. The final test loss we report for
a trial is the test loss at the epoch closest to the epoch with
the lowest validation error.2 When the dataset size is 0%,
we use the test loss at the final epoch.

>We only compute test loss before training, after every 3
epochs of training, and after training.
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Statistic CPN MAML PTS

Oth 6.36-107%x 4.68-107%x 1.35-10"%*x
25th 1.23x 0.87x 0.76x

50th 5.84x 1.17x 1.28%

75th 54.36 1.71x 2.66x

100th 4.43-107x  852-10°x  7.14-10%*x
MPI 21st 35th 37th

GM 9.50% 1.09x 1.08x%

Dataset Size CPN MAML PTS

0% 84.40x 1.42x 2.63x
0.1% 10.43x 0.91x 0.87x%
1% 2.90% 0.51x 0.90%
10% 4.12x 1.54x 0.88x
100% 6.67 x 1.53 % 0.76 x

Figure 4: Geometric mean test loss improvement over random initialization on 1,000 EXESTACKCPN test programs, taken
over all programs and dataset sizes (left) and grouped by dataset sizes (right). The table on the left reports improvements at a
sample of percentiles from Oth (performance that is the worst compared to random initialization) to 100th (performance that
is the best compared to random initialization), reports the minimum percentile at which an initialization method improves
over random initialization (MPI), and reports overall geometric mean improvements (GM).

Stat.  CPN MAML  PTS % Data_ CPN MAML  PTS
ot 022x  028x 023x  Program CPN  MAML PTS o ata
25th  0.88x 0.82x  0.75x 0% 1.81x 0.90x 1.56x
50th 1.23% 0.97 % 0.97x fft 1.47x 0.98 x 0.61x 0 1% 1.98 % 0.94 % 0.98 x
75th  2.96x 1.14x  1.26x invk2j 1.01x 1.07x  1.05x 1;7 1'77 0'93 0'79
100 10691x 199x  3818<  kmeans 7.85x 0.68x  224x o0 2'38X 1'11X 1'23X
0 . X . X . X

MPI  36th 54th 54th . . .

t t t sobel 1.14x 1.06x 0.85% 100% 168x  0.81x 0.86x
GM  1.91x 0.93x  1.05x

Figure 5: Geometric mean test loss improvement over random initialization on PARROTBENCHCPN, taken over all
programs and dataset sizes (left), grouped by programs (middle), and grouped by dataset sizes (right). The top table reports
improvements at a sample of percentiles from Oth to 100th, reports the minimum percentile at which an initialization
method improves over random initialization (MPI), and reports overall geometric mean improvements (GM).

Quantifying Improvements. We define the improvement
for a given configuration (consisting of an initialization
method, program, and dataset size) as the ratio of the test
loss achieved by random initialization on that configuration
and the test loss achieved by that configuration. We average
all test losses over trials and instances of an initialization
methods (using arithmetic mean) prior to computing
ratios. For example, we train 3 instances of COMPNETSs,
and for each instance, we perform 9 surrogate finetuning
trials, so we compute an average over 27 items. For each
initialization method, we report the geometric mean of the
improvements grouped by program, grouped by dataset size,
and overall. For some programs and initialization methods,
the resulting surrogates achieve losses of 0. We discard
these results before computing the geometric mean?.

In some figures, we present the improvement at various
percentiles—from Oth to 100th—as well as the minimum
percentile of improvement (MPI). The percentiles from Oth
to 100th show the performance that is the worst compared

3 We discard 2.4% of entries total for EXESTACKCPN
programs and 0% of entries total for PARROTBENCHCPN
programs. For EXESTACKCPN programs, we discard 3.5% of
COMPNET entries, 0% of MAML entries, 4.5% of pretrained
surrogate entries, and 0% of randomly initialized surrogate entries.

to random initialization up to performance that is the
best compared to random initialization. The MPI is the
minimum percentile at which an initialization method
improves over random initialization.

5.2.2. RESULTS

Figures 4 and 5 show finetuning results for a sample
of 1,000 EXESTACKCPN test programs and PARROT-
BENCHCPN, respectively. See Appendix H for the test
losses used to compute improvements.

EXESTACKCPN Test Programs. COMPNETs achieve
the best results on average, with a 9.50x improvement
over random initialization, whereas MAML and pretrained
surrogates achieve only a 1.09x and 1.08x improvement
on average. COMPNETs improve over random initialization
in as low as the 21st percentile of configurations, whereas
MAML and pretrained surrogates improve over random ini-
tialization after the 35th and 37th percentiles, respectively.

COMPNETs improve on EXESTACKCPN test programs
most prominently in the zero-shot regime, where the
improvement is 84.40x over random initialization, whereas
MAML and pretrained surrogates achieve improvements
of 1.42x and 2.63x, respectively. The zero-shot regime
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Figure 6: Color quantization results for a ground-truth NumPy implementation (“True”) vs. approximate implementations.
The original image of a baboon is on the left, followed by images transformed to adhere to a palette of 5 colors.

is also the only regime where pretrained surrogates show an
improvement. The worst performance for both COMPNETS
and MAML is in the middle of the dataset sizes we
evaluated, at a dataset size of 1%, where they achieved
2.90x and 0.51x, respectively. The worst performance for
pretrained surrogates, however, is at a dataset size of 100%,
where they achieve a 0.76 x improvement.

PARROTBENCHCPN Programs. COMPNETs achieve
the best results on average, achieving a 1.91 x improvement
over random initialization, whereas MAML worsened
performance (0.93x) and pretrained surrogates slightly
improved performance (1.05x). COMPNETSs improve over
random initialization in as low as the 36th percentile of con-
figurations, whereas MAML and pretrained surrogates both
improve over random initialization after the 54th percentile.

COMPNETs improve or do not worsen data efficiency on
each PARROTBENCHCPN program, with the smallest
improvement on invk2Jj (1.01x) and the largest improve-
ment on kmeans (7.85x). MAML shows the largest
improvement on invk2j (1.07x) but worsens perfor-
mance on £t and kmeans, achieving 0.98x and 0.68 %,
respectively. Pretrained surrogates show the largest improve-
ment on kmeans (2.24 x), but they worsen performance on
fft and sobel, achieving 0.61x and 0.85x, respectively.

Unlike the results for EXESTACKCPN, the improvement
due to COMPNETs is greatest near the middle of the dataset
sizes we evaluated over. The greatest improvement of 2.38 x
occurs at 10%, and the smallest improvement of 1.68x
occurs at 100%. MAML worsens performance at most

dataset sizes, except at 10%, where it achieves a 1.11x im-
provement over random initialization. Pretrained surrogates
worsen performance at most dataset sizes except 0% and
10%, where they achieve 1.56 x and 1.23x, respectively.

Since COMPNETs improve data efficiency over random
initialization on both EXESTACKCPN and PARROT-
BENCHCPN, we answer yes to RQ 1.

5.3. Neural Surrogates for Color Quantization

To assess whether a COMPNET can improve the quality
of results in an end-to-end application, we use a trained
COMPNET to initialize a neural surrogate used for
color quantization and compare it to other initialization
methods (Kanungo et al., 2002). Color quantization is the
process of reducing the number of distinct colors in an
image. For example, Figure 6 depicts an image of a baboon
color quantizated to five colors.

5.3.1. METHODOLOGY

We follow the methodology for color quantization from
Kanungo et al. (2002) who apply k-means clustering to
the (R, G, B) vectors representing the colors of pixels of
an image and select the cluster centroids as the colors in the
palette. We run k-means clustering for 40 iterations or until
the distance between the old centroids and new centroids
is less than 1 - 10~°. Each pixel color is then remapped to
the closest color in the palette.

We use the Euclidean distance function to compute the
distance between two RGB vectors. We consider both
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Dataset Size CPN MAML PTS RND
0% 2.67-10% £541. 2.79-10% +347. 3.04-10°+63.0 3.05-10°% £ 0.00
0.1% 984. + 733. 1.79-10% £554. 1.73-10% £725. 1.43-103 + 544.
1% 528. + 219. 782. + 300. 760. & 256. 619. + 249.
10% 452. + 299. 717. + 212. 690. + 195. 782. 4+ 307.
100% 504. + 220. 766. + 189. 699. + 171. 655. + 121.

Dataset Size CPN MAML PTS RND

0% 0.33+0.11 0.26+0.03 0.254+0.02 0.25+0.0

0.1% 0.61+0.15 0.45+0.12 047+0.16 0.53=+0.09

1% 0.72+0.12 0.64+0.11 0.65+0.10 0.70+0.11

10% 0.76 £0.12 0.64+0.09 0.64+0.08 0.63+0.08

100% 0.73+0.13 0.62+0.08 0.64+0.05 0.65=+0.06

Figure 7: Quantitative comparison of end-to-end results produced by various initialization methods on color quantization
for a 5-color palette. (Top) The average MSE of the image produced by each initialization method compared to the image
produced by a ground-truth implementation of the kmeans kernel (lower is better). (Bottom) The average SSIM of the
image produced by each initialization method compared to the image produced by a ground-truth implementation of the

kmeans kernel (higher is better).

a reference NumPy implementation and approximate
implementations given by neural surrogates of the kmeans
kernel in PARROTBENCHCPN (Harris et al., 2020).

We use surrogates from the data efficiency evaluation
of Section 5.2. For visual comparisons, we choose a
single surrogate for each dataset size and initialization
method. Since here we evaluate on a distinct image from
the testing set of the kmeans kernel, using the testing
set as a validation set does not constitute data leakage, so
we choose the surrogates with the lowest test losses. For
quantitative comparisons, we aggregate over all surrogates
and no selection criterion is necessary.

We quantify the similarity between NumPy-quantized
images and surrogate-quantized images using both MSE
and the structural similarity index measure (SSIM), the
latter of which provides a quantitative model for the
percieved similarity of images (Wang et al., 2004).

5.3.2. RESULTS

Figure 6 depicts the result of applying 5-color quantization
to an image of a baboon using surrogates trained on dataset
sizes of 0% and 0.1% of the training set. Figure 7 shows
quantitative results comparing initialization methods on
5-color quantization at various dataset sizes. Each entry
shows the average and standard deviation of a metric over
all trials and instances of an initialization method. See
Appendix I for more dataset sizes and color palette sizes.

Visual Results. At a dataset size of 0%, COMPNET- and
MAML-initialized surrogates are the only surrogates that
produce images with detail. The image produced by a
COMPNET surrogate shows more detail than the image pro-

duced by a MAML surrogate, which primarily captures de-
tails on the nose. At a dataset size of 0.1%, all initialization
methods produce images that resemble the original image.
Images produced by COMPNET-initialized and pretrained
surrogates have a higher contrast than images produced by
MAML-initialized and randomly initialized surrogates.

Quantitative Results. At all dataset sizes, COMPNET-
initialized surrogates have the lowest MSE and the highest
SSIM on average. Among the other initialization methods,
there is no consistent winner across dataset sizes.

The variance for the MSE results is comparable across
all initialization methods and is high enough that there is
overlap among methods. For example, at a dataset size of
0%, an MSE result that is one standard deviation below the
mean for MAML is lower than the mean for COMPNETS.
However, for all other dataset sizes the mean MSE for
COMPNETs is lower than the mean MSE for MAML, even
after subtracting a single standard deviation.

For the SSIM results, at smaller dataset sizes, the variance
is high enough that there is overlap among methods. At
larger dataset sizes though, the results are more clearly
separated, with COMPNETs having the highest mean SSIM,
even when one adds a single standard deviation to the mean
SSIM for each of the other initialization methods.

6. Conclusion

In this paper, we presented the concept of a neural surrogate
compiler and demonstrated how a neural surrogate compiler
can be implemented with COMPNETs. We provided a
dataset, EXESTACK, that one can use to learn neural
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surrogate compilers. We demonstrated the effective-
ness of COMPNETs on EXESTACKCPN programs and
PARROTBENCHCPN, a suite of numerical benchmarks.
Specifically, we showed COMPNET-initialized surrogates
achieve losses that are 1.9-9.5x lower than randomly
initialized surrogates, they produce color-quantized images
that are 1.0-1.3x more similar to images produced by an
exact implementation than images produced by randomly
initialized surrogates, and they train in 4.3-7.3x fewer
epochs than randomly initialized surrogates.

The key insight of our work is that a programming language
can condition the space of neural network initializations.
In the limit, a neural surrogate compiler could produce ini-
tializations requiring no training to achieve low error. More
broadly, neural surrogate compilers could be used to encode
programmatically specified behaviors in neural networks,
potentially accelerating training for more general tasks.
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A. Related Work

Neural surrogate compilation is inspired by literature on
neural surrogates of programs and meta-learning. In the
following sections, we survey these fields and describe
other efforts to compile programs to neural networks.

A.1. Neural Surrogates of Programs

A common approach to developing neural surrogates of
programs is to train a program-specific neural surrogate*
on a dataset of input-output examples (Renda et al., 2021),
or more recently, to train a universal neural surrogate on a
dataset that includes many programs (Zaremba & Sutskever,
2015; Nye et al., 2021). Our work presents an alternative
method for training neural surrogates of numerical pro-
grams that maintains the speed of program-specific neural
surrogates but incorporates the data efficiency benefits of
universal neural surrogates.

Program-Specific Neural Surrogates. Researchers
across scientific disciplines have used neural surrogates of
numerical programs to accelerate computations, adapt to
new settings, and enable gradient-based optimization. Es-
maeilzadeh et al. (2012a) demonstrate that neural surrogates
of numerical programs can improve performance for compu-
tations in signal processing, robotics, 3D games, compres-
sion, machine learning, and image processing. To accelerate
optical metasurface design, An et al. (2019) use neural surro-
gates of numerical simulators and Pestourie et al. (2020) use
neural surrogates of partial differential equations. Tercan
et al. (2018) and Kustowski et al. (2020) use neural surro-
gates of numerical simulators for plastic injection molding
and inertial confinement fusion, respectively, to facilitate
data-efficient finetuning on real physical data. Kaya &
Hajimirza (2019) accelerate numerical simulations for solar
cells using neural surrogates, and they use transfer learning
to quickly adapt neural surrogates when simulator configura-
tions change. Shirobokov et al. (2020) use neural surrogates
of non-differentiable, numerical physical simulators, to
enable gradient-based optimization of simulator parameters.

Researchers have used nonnumerical surrogates to opti-
mize and explore discrete configuration spaces. Tseng et al.
(2019) and Renda et al. (2020) develop neural surrogates of a
black-box image signal processing unit and a cycle-accurate
CPU simulator, respectively; both techniques enable
gradient-based optimization of program inputs, to match
some desired input-output behavior. Kwon & Carloni (2020)
develop a neural surrogate of a high-level synthesis pipeline
for hardware. Using this surrogate, they lower the cost of
predicting the performance and cost of hardware configu-
rations, and they use transfer learning to lower the cost of

4 In this section, we emphasize when neural surrogates are
program-specific, to contrast with universal neural surrogates.
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developing neural surrogates for new configuration spaces.

Universal Neural Surrogates. Researchers have de-
veloped universal neural surrogates using a variety of
architectures. Early work in this area uses long short-term
memory networks to predict the results of executing simple,
synthetic Python programs (Zaremba & Sutskever, 2015).
Later work uses graph neural networks that model program
structure in a similar evaluation setup (Bieber et al., 2020).
More recently, researchers have trained Transformer-based
models on synthetic datasets of programs or large datasets
that include programs (Austin et al., 2021; Nye et al., 2021;
OpenAl et al., 2023; Bubeck et al., 2023; Gu et al., 2024).

A.2. Meta-Learning

Meta-learning can improve data efficiency and transfer
learning when there is task-agnostic knowledge that can be
extracted from a family of tasks (Hospedales et al., 2022).
For example, in the setting we consider, the knowledge of
how to execute programs is not specific to any one program
but is useful for compiling each program. We describe the
technique we employ, hypernetworks (Ha et al., 2017), as
well as another meta-learning technique, MAML (model-
agnostic meta-learning) (Finn et al., 2017). The most
noteworthy difference between the two is that, in the former,
the parameter space of the meta-learner and the learners
differ, whereas, in the latter, these spaces are the same.

Hypernetworks. Hypernetworks were first proposed by
Ha et al. and achieve state-of-the-art results on sequence
modeling tasks (Ha et al., 2017). More recent work by
Jin et al. proposes a system, N3, that adapts Transformers
to function as hypernetworks that condition on text for
few-shot learning on image classification tasks (2020).

Model-Agnostic Meta-Learning. MAML is a frame-
work for developing neural network initializations that
can be finetuned to new tasks with a small amount of data
and a few iterations of SGD (Finn et al., 2017). Some
authors have noted, however, that MAML couples the
task space complexity to the complexity of the individual
tasks (Zhmoginov et al., 2022), making the parameter space
a bottleneck as the task space grows. Our technique does
not suffer from this issue because the hypernetwork can be
larger than the generated neural surrogate.

A.3. Compiling Programs to Neural Networks

There exists prior work on compiling programs to neural
networks, though usually as a means of understanding
neural network architectures, rather than producing neural
surrogates of programs.

Lindner et al. present a compiler, Tracr, from the RASP



Learning to Compile Programs to Neural Networks

programming language to Transformer weights. The
Restricted Access Sequence Processing (RASP) Language
is a language with operations developed in analogy to the
attention and feedforward operations in a Transformer;
notably, RASP is not Turing-complete. Tracr was designed
for the purpose of conducting interpretability experiments
and evaluating interpretability methods (Lindner et al.,
2023; Weiss et al., 2021). Since Tracr was not designed
with model efficiency in mind, the resulting models are
much larger than a roughly equivalent model trained from
gradient descent would be, as evidenced by their evaluation.
The COMPNET architecture, however, can be trained to
target any size of architecture.

Giannou et al. present the looped Transformer, a
Transformer-based architecture that functions as a pro-
grammable computer (Giannou et al., 2023). To execute
a program, one expresses the program as commands in their
instruction set, encodes this sequence of commands as the
Transformer input, then executes the Transformer in a loop
until it reaches a halt command. Their instruction set is
Turing-complete, and they use it to implement a calculator,
linear algebra library, and in-context learning algorithms.
This architecture can be thought of as a universal neural
surrogate, in contrast to a neural surrogate compiler.

B. EXESTACK Generation (Extended)

Here we provide a detailed explanation of each step in
generating EXESTACK, following the flow of Figure 3.

@ Preprocessing. We pull the functions in EXESTACK
from files that may contain preprocessor directives, which
may affect the ability for these functions to be executed in
isolation, if left unexpanded. We run the C preprocessor
on source files until no more lines begin with “#”, or we
have run it twice, or an invocation fails.

(2) Extracting Functions. Recognize and collect all
functions from each source file.

(3) Filtering for Pointer-Free Numeric Functions. To
filter for numeric functions in C programs, we only include
C functions that use exclusively f1oat and double data
types in the function signature. Due to the possibility of
dynamically sized inputs in the presence of pointers and
the ambiguity of whether a pointer represents an input or
output, we do not allow pointer types. Consequently, we
also do not allow void as an output type. If checking a
file for the above conditions takes longer than 8 seconds,
we discard it. Note that these filters still allow integral and
pointer data types to be used within the function.
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(4) Filtering for Executable Functions and Collecting
Outputs. To simultaneously check for executability and
collect outputs from a function, we first generate 2,048
sets of inputs by sampling from the uniform distribution
U([-1,1]™), where n is the maximum number of desired
inputs, and we use the same sets of inputs for all programs.
We embed these inputs in a C program that includes the func-
tion source, as well as an execution harness for collecting
outputs. When a program has fewer inputs than the maxi-
mum of n, we truncate the inputs we embed to the number
of inputs the program has. When a program has more inputs
than the maximum of n, we discard it. We compile the har-
ness with the C standard math library included, since many
numerical functions in C make use of this library. If there
are any errors during compilation or execution of a function,
we discard the function. Figure 8 shows an example of the
execution harness instantiated for a function.

(3) Filtering for Deterministic Functions. Since a
neural surrogate is often a deterministic function of its
inputs and weights (e.g., multilayer perceptrons), we filter
nondeterministic functions from our dataset. We check for
determinism by running a function 5 times on the same in-
puts, all sampled from /(—1, 1), and observing whether the
output differs on any execution. For neural surrogate archi-
tectures that are not deterministic, this step can be omitted.

(6) Deduplication. We use a whitespace-invariant
tokenizer to remove duplicate tokenized programs.

C. EXESTACKCPN Generation

To produce EXESTACKCPN, we apply the following
additional filters to EXESTACK:

* Filtering Long Programs. Since BERT-Tiny has a
maximum context length of 512 tokens, we remove
functions with more than 512 tokens. We first strip
comments from all programs to allow more programs to
fit within the context.

* Filtering Large Outputs. Large or NaN outputs can
lead to training instability for neural networks, so we
additionally remove functions with any outputs with an
absolute magnitude of 10 or larger or a NaN value.

* Decontaminating Against PARROTBENCHCPN. It is
possible that EXESTACK contains similar programs to
those in PARROTBENCHCPN. If we trained a COMPNET
on these programs, improvements over random initializa-
tion could be due to memorization. To address this prob-
lem, we remove any programs from EXESTACK that are
syntactically similar to programs in PARROTBENCHCPN.

For the evaluation in Section 5, we allow programs
with a maximum of 9 inputs in the execution filter of
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#include <stdlib.h>
#include <stdio.h>
#include <math.h>

float inputs[1024]1[1] = {
{0.10740153873327762},

i

float fftSin_OutputO (float x) {
return sin(-2 » 3.1415 % Xx);

int main() {
for (int i = 0; i < 1024; i++) {
float arg0 = inputs[i][0];
float out = fftSin(arg0);

printf("%£, ",
printf ("\n");

out) ;

}

return O;

Figure 8: Source code template used for checking ex-
ecutability and collecting outputs, instantiated with the
source of the f £t kernel in PARROTBENCHCPN.

EXESTACK, since this is the number of inputs in the
covering architecture we choose.

Figure 9 depicts the entire pipeline for generating
EXESTACKCPN, Figure 10 shows a summary of the
characteristics of EXESTACKCPN, and Figure 11 contains
a histogram showing the distribution of arity among
EXESTACKCPN programs. For the remainder of this
section, we detail the decontamination step.

C.1. EXESTACKCPN Decontamination

To ensure the improvements observed in Section 5 are not
due to memorization, the final step of EXESTACKCPN
generation is decontamination against PARROTBENCHCPN
programs. A prevailing decontamination methodology is
to remove any syntactic matches up to whitespace (Li et al.,
2022; Lozhkov et al., 2024). Though EXESTACK is not
contaminated with PARROTBENCHCPN programs accord-
ing to this methodology, we strengthen our methodology to
additionally remove syntactically similar programs. This de-
contamination consists of bespoke syntactic analyses—one
for each PARROTBENCHCPN program. For the remainder
of this section, we present each of these syntactic analyses
and a sample of the near-duplicate programs they detect.
In total, decontamination removes 375 functions.
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C.1.1. FFT (OuTtpUT 0)

Recall, the source for the £ft
BENCHCPN is

(0) kernel in PARROT-

float fftSin_OutputO (float x) {
return sin(-2 » 3.1415 % Xx);

To decontaminate EXESTACKCPN against this program,
we search for programs satisfying all conditions below:

* Contains “sin”
¢ Contains either “3.14” or “M_PI”
* Is at most 5 (non-empty) lines long

* Has one input

This methodology surfaces 29 matches. Below, we include
a sample of 5 of these matches:

float seno(float x) {
return sin(x » M_PI / 180);

float exponential (float value) {
return sin(value = 3.14f / 2);

float easeOutSine (float time) {
return sin(time » M_PI / 2);

double sine (double t) {
return sin(2 ~ M_PI = t);

double cosine (double t) {
* M_PI = t);

return cos (2
C.1.2. FFT (OuTPUT 1)

Recall, the source for the £ft
BENCHCPN is

(1) kernel in PARROT-

float fftSin_Outputl (float x) {
return cos (-2 » 3.1415 % x);

To decontaminate EXESTACKCPN against this program,
we search for programs satisfying all conditions below:

¢ Contains “cos”
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[Cunctionse }——+— (4 2 3 0 5 6 7 8 9 10 Q
#define SQUARE (x) ((x)*(x))
e >
- >
TODO i ne return ((x)*(x))+((y)*(y));
return SQR(x)+SQR(y) ¥
f1oat long_func(1oat 2) ( Dt e ol
f£loat long_func(float a) { float b = a*a + a :
float b = ava + a; e ]
return z; ‘
return z }
}
f1oat many_args(
- ‘ Flot manyargs( float 3, o, float 2) { X
oat many_args cat 3, ., float z a8
float a, .., float z) { } s
" }
double head (double* xs) { I\ 4
double head (double* xs) { s s
double head (double* xs) { 3 - = T
return *xs; }
}
| 10t castifiont 1) ( | TELE RN >N
i oa return (int) x; | ’ <ol
}
float call g(float t) { \V4
float call g(float &) ( | | | fleatea o
float call_g(float t) { raturn g(sin(t)); b turn g(sin(t)) »
return g(sin(t)); }
double uniform() { n\/
double uniform() { ubte unito . >4
rety ind () / 21.47; . < R/A2LSAT L
double scaled_exp(x) { d"“‘zle 5“‘%3*{‘*’) { V3
double scaled_exp(x) { Fetumn exp (100 1 200 i ) T
return exp (100 * x);
}
2N/
N
2N
return Gos(x * 2 * 3.14.); PA
}

Figure 9: The EXESTACKCPN generation pipeline (i.e., EXESTACK tailored to COMPNETS). Starting with C source files
from The Stack, we apply a sequence of maps followed by a sequence of filters. The steps are (1) run the C preprocessor,
(2) remove comments, (3) extract functions from the source file, (4) remove functions with more tokens than a user-specified
threshold (e.g., the maximum context length), @ remove functions with more inputs than the target topology, @ remove
functions with pointers in their type signature and nonnumeric functions, (7) remove nonexecutable functions and collect
input-output pairs, (8) remove nondeterministic functions, @ remove functions with any outputs larger than a user-specified
threshold, when run on the set of input-output pairs, remove any duplicate programs, and @ remove any programs

syntactically similar to programs in PARROTBENCHCPN. Red “X”’s denote that a function does not pass a filter and green
checkmarks denote that a function passes all filters.

Characteristic Value EXESTACKCPN Input Distribution
Max Program Length (In Tokens) 512 17500
Tokenizer Vocab Size 30,522
# Programs in Dataset 37,772 15000
# Tokens in Dataset 1,728,304 12500
# 1/0 Pairs Per Program 2,048 5 10000
=

-
o
=}
S

Figure 10: Summary of EXESTACKCPN characteristics.
5000

¢ Contains either “3.14” or “M_PI”

5 4 5 6 7 3
+ Is at most 5 (non-empty) lines long Number of Inputs

« Has one input Figure 11: Distribution of the number of program inputs
for programs in EXESTACKCPN.

This methodology surfaces 20 matches. Below, we include
a sample of 5 of these matches:

float hamming (float x) {

float coss(float x) { return 0.54-0.46+cos (2+M_PIxx);
return cos(x » M_PI / 180); }
}
float easeInSine (float time) {
double cosine (double t) { return 1 - cos(time = M_PI / 2);
return cos (2 * M_PI * t); }
}

float easeInOutSine (float time) {

16
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return 0.5 « (1 - cos(M_PI » time));

C.2. InverseK2]J (Output 0)

Recall, the source for the invk2j kernel in

PARROTBENCHCPN is

(0)

float inversek2j_OutputO (

float x, float y) {
float 11 = 0.5 ;
float 12 = 0.5 ;
float theta2 = (float) acos(
((x = %) + (y » y) —
(11 » 11) -

(12 = 12)) /
(2 « 11 = 12)
)i
return (float) asin(
(y » (11 + 12 *x cos(theta2))
x * 12 % sin(theta2)) /
(x » x + v % V)

)i

To decontaminate EXESTACKCPN against this program,
we search for programs satisfying all conditions below:

9

¢ Contains “asin”,

EEINT3

acos”, “sin”, and “cos”
¢ Contains either “.5” or (“/” and “2”)
* Is at most 7 (non-empty) lines long

* Has two inputs
This methodology surfaces 0 matches.

C.3. InvK2]J (Output 1)

Recall, the source for the invk2j kernel in

PARROTBENCHCPN is

(1)

float inversek2j_Outputl (

float x, float y) {
float 11 = 0.5 ;
float 12 = 0.5 ;
return (float) acos/(
((x = %) + (y » y) —
(11 + 11) - (12 = 12)) /

(2 = 11 = 12)
)

To decontaminate EXESTACKCPN against this program,
we search for programs satisfying all conditions below:
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¢ Contains “acos”
¢ Contains either “.5” or (“/” and “2”)
e Is at most 6 (non-empty) lines long

* Has two inputs

This methodology surfaces 0 matches.

C.3.1. KMEANS

Recall, the source for the kmeans kernel in PARROT-
BENCHCPN is

float euclideanDistance (

float p_0, float p_1, float p_2,
float cl1_0, float cl_1, float cl_2) {
float r;
r = 0;
r += (p_0 - c1_0) = (p_0 - cl1_0);
r += (p_1 - cl_1) » (p_1 - cl_1);
r += (p_2 - cl_2) *» (p_2 - cl_2);

return sqrt(r);

To decontaminate EXESTACKCPN against this program,
we search for programs satisfying all conditions below:

99 gy G

* Contains “sqrt”, , “+”, and “-”

* Has 6 inputs

This methodology surfaces 10 matches. Below, we include
a sample of 5 of these matches:

float len(
float x0, float y0, float =z0,
float x1, float yl, float =zl ) {
return sqgrt (
(x1-x0) * (x1-x0) +
(yl-y0) » (yl-y0) +

(z1-2z0)*(z1-2z0)
) ;

float dist (
float x1, float yl,float zl,
float x2, float y2, float z2) {
return sqgrt (
(x1-%x2) ~ (x1-x2)
(yl-y2) » (yl-y2)
(z1l-2z2) % (z1l-22)

+
+
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) Benchmark  Train Inputs  Test Inputs
J ££t (0) 32768 2048
£fft (1) 32768 2048

float calc_dist(

float x0, float v0, float z0, %nka?(O) 10000 10000
float x1, float yl, float zl) { igzzi;(n égggg iggg;
ﬁz:t j; - E;i - ;‘8; sobel 18725 17976
:ig:i jjst _ s(czplftf(ZO) ! Figure 12: Number of training and testing inputs for each
(4w ax) ¢ benchmark in PARROTBENCHCPN.
(dy = dy) +
(dz = dz)
)i . float sy = 0.0;
return dist; sy += w00 * —1;
} sy += wl0 x —2;
. sy += w20 » -1;
double dist ( sy += w0l * 0;
double x0, double y0, double z0, sy += wll = 0;
double x1, double yl, double zl) { sy += w2l + 0;
return sqgrt ( sy += w02 * 1;
(x1 - x0) » (x1 - x0) + sy += wl2 * 2;
(ylI - y0) = (yl1 - y0) + sy += w22 * 1;

(z1 - z0) = (z1 - z0)

Vi float s = sqgrt(

SX * SX + Sy % sY);
if (s >= (256 / sqgrt(
256 x 256 + 256 % 256)))
s = 255 / sqgrt(
256 x 256 + 256 * 256);
return s;

double dist (
double ax, double ay, double az,
double bx, double by, double bz) ({
return sqrt (

(ax — bx)*(ax — bx) + )
(ay - by)*(ay — by) +
(az — bz)x(az — bz) . . .
) ;s To decontaminate EXESTACKCPN against this program,
} ’ we search for programs satisfying all conditions below:
C.3.2. SOBEL  Contains “sqrt”, “+”, “*”, and *“/”
Recall, the source for the sobel kernel is * Has 9 inputs

float sobel (
float w00, float w01, float w02,
float w10, float wll, float wl2, .
float w20, float w21, float w22) | D. PARROTBENCHCPN Generation
float sx = 0.0;
sx += w00 * -1;
sx += wl0 * 0;

This methodology surfaces 0 matches.

Here, we present the PARROTBENCH programs, explain
the modifications we made to PARROTBENCH to produce
PARROTBENCHCPN, list the resulting source code, and

sx += w20 x 1; describe how we generate inputs for these programs.

sx += w0l * -2;

sx += wll « 0; D.1. PARROTBENCH Source

sx += w2l * 2;

sx += w02 * -1; The kernels in PARROTBENCH are fft (Figure 13),
sx += wl2 = 0; inversek2j (Figure 14), jmeint (Figure 15), jpeg
sx += w22 * 1; (Figure 16), kmeans (Figure 17), and sobel (Figure 18).

18
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void fftSinCos (float x,
* PI * X);
cos (-2 %= PI * x);

*s = sin (-2
*xC =

}

floatx s, floatx c) {

Figure 13: Code for the £ ft benchmark in PARROTBENCH.

float 11 0.5 ;
float 12 = 0.5

4

void inversek2j(float x,

xthetaz =
((x » x) +
(2 « 11 = 12))
~thetal =
(y =

(11 + 12 % cos(+xtheta2))

(x » X + v % V))

}

- X * 12 % sin(xtheta2))

14

Figure 14: Code for the invk2 j benchmark in PARROTBENCH.

We obtained these kernels from the AxBench repository.
For brevity, we have referred to the inversek?2 j kernel
as 1nvk?2 7 throughout this paper.

D.2. PARROTBENCH Modifications

Due to methodological choices in EXESTACK and
architectural choices for COMPNETS, we omit some
PARROTBENCH benchmarks from PARROTBENCHCPN
and modify others. We omit the jmeint and jpeg bench-
marks in PARROTBENCH because they are significantly
longer than the 512-token context length of a BERT-Tiny
(1,192 and 1,250 tokens, respectively). We modify the fft
and invk2j benchmarks because they both use pointer
arguments to store outputs, and our COMPNETS were
not trained to support pointer arguments. To make each
function pointer-free, we split it into two functions, each
function computing one of the outputs (Figures 19 and 20).
Additionally, the sobel benchmark uses pointer inputs,
so we rewrite it to only use scalar inputs (Figure 22).
Finally, the kmeans benchmark uses custom structs to
pass arguments, so we rewrite the benchmark to desugar
these structs into their scalar components (Figure 21).

D.3. PARROTBENCHCPN Input Generation

We attempt to exactly replicate the dataset used by Es-
maeilzadeh et al. (2012a) for the subset of benchmarks we
consider from PARROTBENCH. To replicate their dataset,
we analyze the source code in the AxBench repository,
which contains all kernels in PARROTBENCH. Figure 12
shows the size of the dataset produced by the methodology
in the following sections.
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D.3.1. FFT

To generate train inputs for ££t, we generate 32,768 inputs
uniformly at random from [0, 1/2]. To generate test inputs
for £ft, we generate 2,048 inputs uniformly at random
from [0, 1/2], resampling as necessary whenever an input
is generated that exists in the training set.

D.3.2. INVERSEK2]J

To generate train inputs for invk2 Jj, we generate 10,000
inputs uniformly at random from [—1/2,1] x [0,1]. To
generate test inputs for invk2 j, we again generate 10,000
inputs uniformly at random from [—1/2, 1] x [0, 1], but we
resample whenever an input exists in the training set.

D.3.3. KMEANS

To generate train inputs for kmeans, we generate 50,000
inputs uniformly at random from [0, 1]°.

To generate test inputs for kmeans, we use an image of
peppers for RGB inputs (see Figure 23) and we generate 6
centroids with uniformly random coordinates in [0, 1], the

number of centroids used by Esmaeilzadeh et al. (source).

For each RGB input, we choose a random centroid to
compute the kmeans kernel on, and we add the resulting
I/O sample to the testing set. This procedure results in a
testing set containing 48,400 inputs.

D.3.4. SOBEL

To generate training and testing inputs for sobel, we read
from files on the official repo of Esmaeilzadeh et al. (2012a)
(here and here, respectively). These files contain 18,725
and 17,976 input-output pairs, respectively.

float y, floatx thetal, floatx theta2)
(float) acos(
(y = y) — (11 = 11) — (12 % 12)) /
(float) asin(

/

{


https://github.com/he-actlab/AxBench_old
https://github.com/he-actlab/AxBench_old
https://github.com/he-actlab/AxBench_old/blob/1c3421004a84160fc4345b2fab254eb2f22bc032/apps/kmeans/src/kmeans.c#L72
https://github.com/he-actlab/AxBench_old/blob/1c3421004a84160fc4345b2fab254eb2f22bc032/apps/sobel/data/sobel_train.data
https://github.com/he-actlab/AxBench_old/blob/1c3421004a84160fc4345b2fab254eb2f22bc032/apps/sobel/data/sobel_test.data
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int tri_tri_intersect (float VO[3], float V1[3],float V2[3],
float UO[3],float U1[3],£float U2[3])

{

float E1[3],E2([3];

float N1[3],N2[3],d1,d2;

float du0,dul,du2,dv0,dvl,dv2;

float D[3];

float isectl([2], isect2[2];

float duOdul, duOdu2,dv0dvl,dv0dv2;

short index;

float vpO0,vpl,vp2;

float up0,upl,up2;

float b, c,max;

//int r;

/* compute direction of intersection line x/

. B . CROSS (D, N1,N2);
/#* compute plane equation of triangle(V0,V1,V2) =/ (D,/NL,N2) ;

SUB (E1,V1,V0) ;
SUB (E2,V2,V0) ;
CROSS (N1,E1,E2);

/% compute and index to the largest component of D #*/
max=fabs (D[0]);

d1=-DOT (N1,V0) ; index=0;
/+ plane equation 1: NI1.X+d1=0 =/ b=fabs (D[1]);
plane equation o AL AT c=fabs (D[2]);
- . N if (b>max) max=b,index=1;
* put U0,UI1,U2 int 1 uation 1 to c t . .
/* p uo, U1, U nto plane equation 1 to compute Lf (comax) max—c, index—2

signed distances to the plane*/
du0=DOT (N1,U0) +d1;
dul=DOT (N1,Ul) +d1l;
du2=DOT (N1,U2) +d1;

/% this is the simplified projection onto Lx/
vp0=V0 [index];
vpl=V1[index];
vp2=V2[index];
/* coplanarity robustness check =/ s L !

up0=U0 [index];
upl=Ul[index];
up2=U2 [index];

RE\n") ;
if (fabs (du0) <EPSILON) du0=0.0;

//printf ("H

if (fabs
if (fabs

di f

duO0dul=dul+dul;
duldu2=dul+du2;

(dul) <EPSILON) dul=0.0;

(du2) <EPSILON) du2=0.0; /* compute interval for t

COMPUTE_INTERVALS (
vp0,vpl,vp2,
dv0,dvl,dv2,
dv0dvl,dv0dv2,

isectl[0],isectl[1]

if (du0dul>0.0f && du0du2>0.0f) i
same s n all of them + t al 0 ? . S
( ;; Zn;L*lgnﬁo e “ not equal */ /* compute interval for triangle 2 */
xoutput = 0 ;
return 0; /+* no intersection occurs */ COMPUTE_INTERVALS (
} up0,upl,up2,
du0, dul,du2,
duOdul, du0du2
/* compute plane of triangle (U0,Ul,U2) =/ .u uzsdu .u ! B
SUB(E£1,U1,U0) ; isect2[0],1isect2[1]);
, UL, i
SUB (E2,U2,U00) ; . .
CROéS(&Z él ;é). SORT (isect1[0],isect1[1]);
do= DOT(&Z 60)', SORT (isect2[0],isect2[1]);
= ’ i
olane 1ation : N2.X+d2=0 . . . . s
/+ plane equation 2: N2.X+d2=0 «/ if (isectl[l]<isect2[0] || isect2[l]<isectl[0])

{
//*output = 2 ;
return 0O;
}
//*output = 3 ;
return 1;

/# put V0,V1,V2 into plane equation 2 #*/
dv0=DOT (N2,V0) +d2;
dv1=DOT (N2,V1) +d2;
dv2=DOT (N2,V2) +d2;

#if USE_EP
//printf ("THERE\n") ;
if (fabs (dv0)<EPSILON) dv0=0.0;
if (fabs (dvl)<EPSILON) dv1=0.0;
if (fabs (dv2) <EPSILON) dv2=0.0
#endif

;

dv0dvl=dv0+dvl;
dv0dv2=dv0xdv2;

if (dv0dv1l>0.0f && dv0dv2>0.0f)
same sign on all of them +
utput 1 ;

return 0; /% no intersection occurs */

equal 0 ? */

Figure 15: Code for the jmeint benchmark in PARROTBENCH.
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/+ DCT for One block (8x8) x*/
void dct (INT16 xdata)
{
UINT16 i;
INT32 x0, x1, x2, x3, x4, x5, x6, x7, x8;
for (i=8; i>0; i--)
o {
red x8 = data [0] + data
/+ cos PI/16 * root(2) +/ x0 = data [0] - data
i =14 0
ftat?i i??;tAUIEZ}?Afl 1a20; x7 = data [8] + data [48];
/* s{ok: Pl root (« */
= 8] - 481;
static const UINT16 c2-1338; ¥l = data [8] - data [40)
/* c °T/16  root (2) #*/
= 16] + 4017
static const UINT16 c3-1204; x6 = data [10] + data [20]
N 5 x2 = data [16] - data [40];
/% cos 5PI/16 * root(2) =/
i -805;
static const UINTL6 c57605; x5 = data [24] + data [32];
/* cos 3PI/8 * root (2) */ %3 - data [24] - data [32];
static const UINT16 c6=554; ceer
/* cos 7PI/16 * root(2) */ .
static const UINT16 c7=283; x4 = %8 © x5
x8 —-= x5;
static const UINT16 sl1=3; X5 = x7 + %6:
static const UINT16 s2=10; 7 = x6; !
static const UINT16 s3=13; !
for (i-8; i-0; i--) data [0] = (INT16) ((x4 + x5) >> sl);
( o data [32] = (INT16) ((x4 - x5) >> sl)
- 77;
Xg - jata Eg} - gata 7}j data [16] = (INT16) ((x8+c2 + x7+c6) >> s3);
*Y o data ata Lhli data [48] = (INT16) ((x8+c6 - x7+c2) >> s3);
oo El% N, %?}f data [56] = (INT16) ((x0+c7 - xl+c5 + x2+c3 — x3+cl)
* oo odata ata Lol data [40] = (INT16) ((x0xc5 - xlscl + x2xc7 + x3c3
B data [24] = (INT16) ((x0+c3 - xlxc7 - x2xcl - x3%c5)
x6 = data [2] + data [5]; .
= + 7
%2 - data [2] - data [5]; data [8] (INT16) ((x0+cl + x1%c3 x2+ch + x3+cT)
x5 = data [3] + data [4]; , datatt;
x3 = data [3] data [4]; }
xésl i,X85.} x5; Coef
* I and s ZigZag
X5 = x7 + %6 void quantization(
! INT16+ const data, UINT1l6* const quant_table_ptr) {
x7 —= x6;
INT16 i;
INT32 1 ;
data [0] = (INT16) (x4 + x5); 32 value;
data [4] (INT16) (x4 - x5); for (i = 63; i >= 0; i——) {
data (2] = (INT16) ((x8+c2 + x7+c6) >> s2); Z:iﬁ: - ?i;ié;]7‘m233887ti?l?;?tr[l]
data [6] = (INT16) ((x8%c6 — x7xc2) >> s2); h c
data [7] - (INT16) ( : Temp [zigzagTable[i]] = (INT16) value;
(x0%c7 - x1l*xc5 + x2xc3 - x3xcl) >> s2); }
data [5] = (INT1l6) (
(x0+c5h x1lxcl + x2xc7 + x3%c3) >> s2);
data [3] = (INT16) (
(x0%c3 - xlxc7 - x2+cl - x3%cb5) >> s2);
data [1] = (INT16) (
(x0+xcl + x1*xc3 + x2xc5 + x3xc7) >> s2);
data += 8;
}
data -= 64;

Figure 16: Code for the jpeg benchmark in PARROTBENCH.

float euclideanDistance (RgbPixelx p, Centroidx cl) {

float r;

r = 0;

r += (p—>r - cl->r) * (p—>r - cl->r);
r += (p—>g - cl->g) * (p—>g - cl->g);
r += (p—>b - cl->b) » (p—>b - cl->b);

return sqrt(r);

Figure 17: Code for the kmeans benchmark in PARROTBENCH.
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static float kx[][3] =
{

static float ky[][3]
{

float convolve (float w([] [3], float k[][3])
{

float r ;
r = 0.0 ;
for( int j = 0 ; J < 3 ; J++ )
for (int 1 = 0 ; 1 < 3 ; i++ )

return r ;

float sobel (float w[][3])
{

float sx ;

float sy ;

float s ;

sx = convolve (w, ky) ;

sy = convolve (w, kx) ;

s = sqgrt(sx * sx + sy * sy) ;

if (s >= (256 / sqgrt (256 * 256 + 256 x 256)))
s = 255 / sqrt (256 + 256 + 256 * 256);

return s ;

}

Figure 18: Code for the sobel benchmark in PARROTBENCH.

float fftSin_OutputO (float x) {
return sin(-2 » 3.1415 * Xx);

float fftSin_Outputl (float x) {
return cos (-2 * 3.1415 * Xx);

}

Figure 19: Code for the £ £t benchmark in PARROTBENCHCPN.
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float invk2j_OutputO (float x, float y) {

float 11 = 0.5 ;

float 12 = 0. ;

float theta2 (float) acos (
((x » x) + (y » vy) — (11 » 11) - (12 = 12)) /
(2 = 11 = 12)) ;

return (float)asin/(
(y » (11 + 12 * cos(theta2)) - x * 12 % sin(theta2)) /
(x » x 'y *vVy)) ;

a1

float invk2j_Outputl (float x, float y) {
float 11 = 0.5 ;
float 12 = 0.5 ;
return (float)acos(
((x » x) + (y » vy) — (11 = 11) - (12 = 12)) /
(2 = 11 = 12)) ;
}

Figure 20: Code for the invk2 j benchmark in PARROTBENCHCPN.

float euclideanDistance (
float p_0, float p_1, float p_2,
float c1_0, float cl_1, float cl_2) {

float r;

r = 0;

r += (p_0 - c1_0) = (p_0 - cl1_0);
r += (p_1 - cl_1) = (p_1 - cl_1);
r += (p_2 - cl_2) x (p_2 - cl_2);

return sqrt (r);
}

Figure 21: Code for the kmeans benchmark in PARROTBENCHCPN.
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float sobel (

float
float
float

float
SX +=
SX +=
SX +=
SX +=
SX +=
SX +=
SX +=

float
if (s
S:

= wll

w00, float wO0l, float w02,
wl0, float wll, float wl2,
w20, float w21, float w22)
sx = 0.0;
w00 » —1;
wl0 *« O;
w20 *« 1;
w0l ~ —2;
wll * O;
w2l *« 2;
w02 * —1;
wl2 * 0;
w22 * 1;
sy = 0.0;
w00 = —1;
wl0 » —-2;
w20 « —1;
w0l * O;
* 0;
w2l *« 0;
w02 * 1;
wl2 * 2;
w22 * 1;
s = sgrt(sx * sx + sy * sy) ;
>= (256 / sqgrt (256 * 256 + 256 x 256)))

255 / sqgrt (256 % 256 + 256 *x 256);

return s ;

}

Figure 22: Code for the sobel benchmark in PARROTBENCHCPN.
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Figure 23: Image used to generate testing data for kmeans.

E. COMPNET Training Details

COMPNETs are controlled by the following hyperparam-
eters: program batch size, input batch size, learning rate,
number of training epochs, dataset program split, dataset in-
put split, and the surrogate topology. We swept over learning
rates and chose fixed values for all other hyperparameters.
We selected the learning rate that achieved the best final loss
on validation programs, averaged over trials, and we used all
trials of the winning configuration as initialization methods.

We summarize the training configuration for COMPNETS
in Figure 24. Figures 25 and 26 show loss curves for
COMPNETs trained on EXESTACKCPN, using both
padding modes described in Appendix N.

F. MAML Training Details

MAML is controlled by the following hyperparameters: the
meta batch size (number of tasks per batch), the input batch
size (number of inputs per task), the number of epochs, the
inner gradient update step size («), the outer gradient update
step size (), and the number of inner gradient update steps.
We modify the official MAML implementation® to support
training on EXESTACKCPN.

We choose the meta batch size and the input batch size
to align with how we train COMPNETs (Appendix E).
We decided to use the maximum number of epochs Finn
et al. (2017) use in their applications (70, 000), and we
observed that in all applications, (3 is fixed at 0.001. For
the remaining parameters, o and the number of inner
update steps, we perform a hyperparameter sweep, backing
each configuration with 3 trials. We choose the extents
of each hyperparameter in the sweep as the minimum
and maximum of hyperparameter settings observed in
applications, and we add some points between these extents.
However, we limit the hyperparameter settings for « to a
maximum of 0.2, as previous experiments (not reported in
this paper) showed training instability at higher values.

After each configuration finishes training, we finetune

>https://github.com/cbfinn/maml
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it for 20 epochs for each of a sample of 5 programs
from the EXESTACKCPN validation set. We choose the
hyperparameters with the lowest loss on the validation
inputs at the end of finetuning, averaged over the sample
of programs and trials. We use all 3 trials of the winning
configuration as initialization methods.

We summarize the training configuration for MAML in
Figure 27. Figures 28 and 29 show loss curves for MAML
initializations trained on EXESTACKCPN, using both
padding modes described in Appendix N. The curves
include prelosses and postlosses for training programs.
In MAML training, the preloss is the loss of the current
initialization when evaluated on a task, and the postloss is
the loss of the initialization after finetuning for the number
of inner gradient update steps.

G. Neural Surrogate Pretraining Details

Similarly to COMPNETs, pretrained surrogates are con-
trolled by the following hyperparameters: program batch
size, input batch size, learning rate, number of training
epochs, dataset program split, dataset input split, and the
surrogate topology. We sweep over the same set of learning
rates as for COMPNETS, and we use the same values for
other hyperparameters that we use for COMPNETs. We
select the learning rate that achieves the best final loss on
test programs, averaged over trials, and we use all trials of
the winning configuration as initialization methods.

We summarize the training configuration for pretrained
surrogates in Figure 30. Figures 31 and 32 show loss curves
for surrogates pretrained on EXESTACKCPN, using both
padding modes described in Appendix N.

H. Data Efficiency Improvements (Extended)

We compute improvements in the data efficiency evaluation
as a ratio of the test loss achieved by random initialization
over the test loss achieved by an initialization method. Here,
we present the test losses we use to compute these ratios, as
well as test loss improvements grouped at a finer granularity.

Figure 33 shows test loss as a function of the dataset size.
For all initialization methods, performance improves the
most on £ £t as more training data becomes available. The
difference between the average test loss at 0% and 100%
is ~ 6 orders of magnitude for every initialization method,
whereas it is only ~ 2-3 on other benchmarks. The kmeans
benchmark exhibits the least variation, with all initialization
methods dropping by < 2 orders of magnitude on average,
from 0% to 100% of training data. The only benchmark
where COMPNETs dominate at all dataset sizes is kmeans.
For other benchmarks, COMPNETs perform, on par, slightly
better, or slightly worse, varying across dataset sizes.


https://github.com/cbfinn/maml
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Setting Value

Architecture BERT-Tiny

Program Batch Size 32

Input Batch Size 1024

Learning Rate €{1-107°,2-107%,5-1075,5-10"4,8- 1074}
# Epochs 1,500

Dataset Program Split  80/10/10

Dataset Input Split 50/0/50

Surrogate Topology 9+4—-4—-1

GPU NVIDIA Tesla T4 16GB
# Trials 3

Figure 24: Training configuration for COMPNETs. We represent any values we sweep over as a set, and we bold the values

that obtain the best final loss on test programs.

Figure 34 contains histograms showing, for a sample of
1,000 EXESTACKCPN test programs, the test loss each
initialization method achieves at the epoch with the lowest
validation loss. At a dataset size of 0%, the distribution
of COMPNET losses is significantly skewed to smaller
losses, relative to other initialization methods. At a dataset
size of 0.1%, every initialization method has roughly a
bimodal loss distribution. In the smaller-loss mode, each
initialization method has comparable performance, but on
the larger-loss mode, COMPNETs still skew towards smaller
losses. As the dataset sizes increase, these modes begin to
merge together, with COMPNETS continuing to retain more
mass in lower losses than other initialization methods.

Figure 35 contains tables showing the test loss each
initialization method achieves at the epoch with the lowest
validation loss for PARROTBENCHCPN programs. At a
dataset size of 0%, COMPNETSs have the worst loss on £ft,
but the best or among the best loss for all other benchmarks.
At a dataset size of 0.1%, COMPNETs have the best or
among the best loss for all benchmarks except for sobel,
where MAML achieves the best loss by a significant margin.
At higher dataset sizes, none of the initialization methods
consistently win for each benchmark.

Figure 36 shows test loss improvements grouped by both
programs and dataset sizes. At a dataset size of 0% for fft,
COMPNETs have among the worst test loss improvement,
but for higher dataset sizes, COMPNETSs significantly
outperform the other initialization methods, except at
100%, where MAML achieves a slightly better test loss im-
provement (0.70x vs. 0.75x). At a dataset size of 0% for
invk2j, COMPNETs have the best test loss improvement,
but for higher dataset sizes, COMPNETSs achieve lower
test loss improvements than other initialization methods,
except at 100%, where COMPNETS barely achieve the best
test loss improvement (0.93x vs. 0.92x for MAML and
0.90x for pretrained surrogates). At a dataset size of 0%
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for kmeans, both COMPNETSs and pretrained surrogates
achieve significant test loss improvements of greater than
3.5 %, but at higher dataset sizes, COMPNETSs achieve better
and better test loss improvements (maximum of 15.74x at
100% dataset size), whereas pretrained surrogates remain
the same or worse. At a dataset size of 0% for sobel, all
initialization methods achieve a test loss improvement of
more than 1.6x, with COMPNETs achieving the highest
at 2.84 x. However, at higher dataset sizes, COMPNETSs and
MAML alternate between improving, matching, or worsen-
ing test loss, and pretrained surrogates only worsen test loss,
achieving a maximum of 0.77x test loss improvement.

I. Neural Surrogates
for Color Quantization (Extended)

In this section, we present visual results for all dataset sizes
in the data efficiency evaluation, as well as quantitative
results for 10- and 15-color palettes.

I.1. Visual Results

Figure 37 contains visual results for surrogates trained on
0%, 0.1%, 1%, 10%, and 100% of the kmeans training
set. COMPNETs and MAML initializations are the only
initialization methods that produce an image with detail
at a dataset size of 0%. Of the two, the COMPNET
result has more definition. At a dataset size of 0.1%, all
initialization methods produce images with detail. MAML-
and randomly initialized surrogates produce images with
duller colors than COMPNET-initialized and pretrained
surrogates. At larger dataset sizes, all initialization methods
converge to images that look similar to the reference image.

I.2. Quantitative Results

Figures 38 and 39 present quantitative results for 10- and
15-color palettes, respectively. At all color palette sizes
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COMPNET Train Program Loss Curves (Random Padding)

LR =1e - 05
LR =2e—05
LR = 5e — 05
LR = 0.0005
LR = 0.0008

100<

Train Program Loss
—
o
I

10—2<

0 200 400 600 800 1000 1200 1400
Epoch

COMPNET Test Program Loss Curves (Random Padding)

LR =1e - 05
LR =2e—05
LR = 5e¢ — 05
LR = 0.0005
LR = 0.0008

2 % 100

1004

Test Program Loss

w:mu ARV o B M) oy Y Y0

-1
6 x 10 W I BN N T P | STV T WO

0 200 400 600 00 1000 1200 1400
Epoch

Figure 25: Loss curves for COMPNET training hyperparameter sweep, using EXESTACKCPN with random-padded inputs
(see Appendix N). Each curve represents a training trial. The test program loss includes validation programs as well.
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COMPNET Train Program Loss Curves (Zero Padding)

LR =1e - 05
LR =2e—05
LR = 5e — 05
LR = 0.0005
LR = 0.0008

2 x 10°

—
ja)
=

Train Program Loss

6x 107!

4% 107!

0 200 400 600 00 1000 1200 1400
Epoch

COMPNET Test Program Loss Curves (Zero Padding)

LR =1e - 05
LR =2e—05
LR = 5e — 05
LR = 0.0005
LR = 0.0008

2 x 10°

Test Program Loss

1004

‘M
N T Y VA T Tt AT AN

0 200 400 600 00 1000 1200 1400
Epoch

Figure 26: Loss curves for COMPNET training hyperparameter sweep, using EXESTACKCPN with zero-padded inputs
(see Appendix N). Each curve represents a training trial. The test program loss includes validation programs as well.
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Setting Value

Meta Batch Size 32

Input Batch Size 1024

# Epochs 70,000

o € {0.01,0.05,0.1,0.2}
B 0.001

# Inner Update Steps € {1,2,3,4,5}

# Finetuning Epochs 20

# Trials 3

Dataset Program Split  80/10/10

Dataset Input Split 50/20/30

Surrogate Topology 9—+4—-4->1

GPU NVIDIA Tesla T4 16GB

Figure 27: Training configuration for MAML. We represent
any values we sweep over as a set, and we bold the values
that obtain the best finetuning loss on validation programs.

and dataset sizes, COMPNET-initialized surrogates produce
better results, in terms of both MSE and SSIM.

J. Training Time Improvements

To assess whether COMPNETs improve training time of
neural surrogates, we use COMPNETS to initialize neural
surrogates, finetune on training data until they reach a
target test loss, then compare the results to those of other
initialization methods. We first detail the methodology of
this experiment, then present results.

J.0.1. METHODOLOGY

We now describe the methodology for setting a target test
loss to use as a stopping condition, the configuration space
we sweep over, how we quantify improvements, and how
we visualize results.

Setting a Target Test Loss. We set a target test loss for
each program by training 9 randomly initialized surrogates
for 5,000 epochs. The average final test loss is the target
test loss for all initialization methods.

Experiment Configurations. In this experiment, we
sweep over configurations consisting of a program and an
initialization method. Given a program and initialization
method, we produce a neural surrogate initialization. We
then train the initialized neural surrogate on the training
input set until it reaches the target test loss or until it reaches
15,000 epochs. We call whichever epoch comes first the
finish epoch for the trial.

Quantifying Improvements. We define the improvement
for a given configuration (consisting of a program and initial-
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ization method) as the ratio of the finish epoch for random
initialization and the finish epoch by the configuration’s
initialization method. All finish epochs are averaged over
trials (using arithmetic mean) prior to computing ratios. For
each initialization method, we report the geometric mean of
the improvements grouped by program, grouped by dataset
size, and overall. For some programs and initialization
methods, the resulting surrogates achieve losses of 0. We
discard these results before computing the geometric mean.

There are a few subtleties in this methodology. First, note
that random initialization does not always have a finish
epoch of 5,000, because the target error set after 5,000
epochs of training may have already been achieved earlier
in training. Also, since the timeout epoch (15,000) is 3x
the baseline finish epoch (5,000), the worst case slowdown
for each initialization method is % X.

Visualizing Results. Since we evaluate on many pro-
grams in EXESTACKCPN, we plot the number of finished
programs as a function of the number of epochs for each
initialization method. For each program and initialization
method, we calculate the finish epoch for that program
as the average finish epoch over all instances of the
initialization method and all trials for that instance.

J.0.2. RESULTS

The results are summarized in Figures 40 and 41 for the
sample of EXESTACKCPN test programs and Figures 42
and 43 for ParrotBenchCPN.

EXESTACKCPN Test Programs. COMPNETs achieve
the best results on average, with a 7.28 x improvement over
random initialization, whereas MAML and pretrained surro-
gates achieve 1.16x and 0.93 x improvements, respectively.
COMPNETs improve over random initialization in as low
as the 18th perecentile, whereas MAML and pretrained
surrogates improve over random initialization after the 36th
and 48th percentile, respectively.

Until the ~ 5,000th epoch, COMPNETs finish training on
strictly more programs than all other initialization methods.
At the 5,000th epoch, COMPNETs finish training for ~ 90%
of programs. For the remaining 10% of programs, random
initialization and MAML begin to overtake COMPNETS,
at epochs ~ 6,250 and ~ 9,000, respectively.

PARROTBENCHCPN Programs. COMPNETs achieve
the best results on average, with a 4.31x improvement over
random initialization, whereas MAML and pretrained surro-
gates achieve 1.07x and 2.35x improvements, respectively.
COMPNETs improve over random initialization after the
50th perecentile, MAML improves over random initial-
ization after the 54th percentile, and pretrained surrogates
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MAML Train Preloss Curves (Random Padding)
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Figure 28: Loss curves for MAML training hyperparameter sweep, using EXESTACKCPN with random-padded inputs
(see Appendix N). Each curve represents a training trial.
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Figure 29: Loss curves for MAML training hyperparameter sweep, using EXESTACKCPN with zero-padded inputs (see
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Setting Value

Program Batch Size 32

Input Batch Size 1024

Learning Rate €{1-107%,2-107°,5-107°,5-107%,8-107*}
# Epochs 1,500

Dataset Program Split  80/0/20

Dataset Input Split 50/0/50

Surrogate Topology 9—>4—-4—-1

GPU NVIDIA Tesla T4 16GB

# Trials 3

Figure 30: Training configuration for pretrained surrogates. We represent any values we sweep over as a set, and we bold

the values that obtain the best final loss on test programs.

improve over random initialization after the 48th percentile.

COMPNETs range between improvements of 0.49x on
invk27j to 674x on kmeans. The variance between
other techniques is smaller, with MAML varying between
0.65x on invk2j and 2.15x on kmeans, and pretrained
surrogates varying between 0.56x on invk23j and 87x
on kmeans. All initialization methods present slowdowns
on invk2j and speedups on kmeans, so it is possible
ExeStackCPN does not include similar computations
to invk27j but does include similar computations to
kmeans. However, we use an extensive decontamination
methodology (see Appendix C.1), so we conclude these
similarities are abstract in nature.

Since COMPNETSs improve training time over random
initialization for programs in both EXESTACKCPN and
PARROTBENCHCPN, we answer yes to RQ 2.

Additional Data. We present the initial train losses,
initial test lossses, and target test losses for both EXESTACK-
CPN (Figure 44) and PARROTBENCHCPN (Figures 45,
46, and 47). We also present the average finish epoch
(Figure 48) for each initialization method and the number
of timeouts (Figure 49) on PARROTBENCHCPN programs.

K. PARROTBENCHCPN
True vs. Predicted Functions

In this appendix, we present graphs showing the function
each PARROTBENCHCPN program implements, as well
as the approximations of the function each initialization
method produces in the data efficiency evaluation of
Section 5.2. To visualize the behavior of multivariate
functions, we generate a graph for each argument, where
we vary that argument and fix all other arguments to
zero. We include graphs for the training set at each of
the dataset sizes we evaluated on in Section 5.2 (i.e.,
{0%,0.1%, 1%, 10%, 100%}). Each line is an average over
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compilers of that type (e.g., all the COMPNETs we trained
for the CPN compiler type) and all trials for those compilers.
The fill-between for each compiler type shows the minimum
and maximum predictions across each instance of that
compiler type and each surrogate initialized by that instance.

Figure 50 shows results for £ ft, Figures 51 and 52 show
results for both inputs of invk2 j, Figures 53, 54, 55, 56,
57, and 58 show results for each input of kmeans, and
Figures 59, 60, 61, 62, 63, 64, 65, 66, and 67 show results
for each input of sobel.

L. Neural
Surrogates Achieve Acceptable Error

In this section, we show that, in the context of our
evaluation, the error incurred from using neural surrogates
is satisfactory for downstream applications. We first show
that the surrogates of Esmaeilzadeh et al. (2012a) achieve
acceptable end-to-end error on PARROTBENCHCPN
programs, then we show that our surrogates achieve
commensurate or lower error than their surrogates.

L.1. End-to-End Error

Esmaeilzadeh et al. calculate end-to-end error for the
benchmarks we consider from PARROTBENCH as follows:

» fft. Apply the fast Fourier transform to a sequence
of 2,048 values, where the value at the sth index is
i, and measure the average relative error between the
output of the original £ft implementation and the
approximate £ ft implementation.

* invk2j. Generate 1,000 pairs of joint angles (61, 63),
with both angles sampled uniformly at random from
[0, 7/2]. Run forward kinematics on these angles, to
obtain (z,y) coordinates for the tip of the joint arm.
Run inverse kinematics on these (x,y) coordinates,
to obtain joint angles (9},9}) that place the tip of
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Pretrained Surrogate Train Program Loss Curves (Random Padding)
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Figure 31: Loss curves for pretrained surrogate hyperparameter sweep, using EXESTACKCPN with random-padded inputs
(see Appendix N). Each curve represents a training trial. The test program loss includes validation programs as well.
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Pretrained Surrogate Train Program Loss Curves (Zero Padding)
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Figure 32: Loss curves for pretrained surrogate hyperparameter sweep, using EXESTACKCPN with zero-padded inputs
(see Appendix N). Each curve represents a training trial. The test program loss includes validation programs as well.
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Benchmark: fft
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Figure 33: Log-log plot showing dataset size vs. test loss for each initialization method on each benchmark in PARROT-
BENCHCPN. We present the test loss at the epoch with the lowest validation loss. When the validation set is empty, we use
the test loss at the final epoch. Since zero is not a valid point on a logarithmic scale, we include the loss values for the empty
dataset at a nonzero point on the 2 axis that is also smaller than the smallest nonzero dataset size, and we label it with “x = 0”.

the joint arm at (x,y). Measure the average relative
error between the joint angles recovered by the
original invk2 j implementation and the approximate
invk?2 j implementation.

* kmeans. Apply one iteration of k-means clustering
to each pixel of the image in Figure 23, then set each
pixel’s color to the color of the closest centroid. Mea-
sure the average root mean squared error between the
image produced by the original kmeans implemen-
tation and the approximate kmeans implementation.

* sobel. Convert the image in Figure 23 to grayscale
using a weighted average of 30% red, 59% green, and
11% blue. Apply the sobel filter to the first row of
the image, the first column, and the last row. Measure
the average root mean squared error between the image
produced by the original sobel implementation and
the approximate sobel implementation.

Figure 68 shows the end-to-end error of neural surrogates
of PARROTBENCHCPN programs, which are semantically
equivalent to a subset of the benchmarks Esmaeilzadeh et
al. evaluated on. The end-to-end error for each benchmark
is < 7.5%, and an end-to end quality loss of 10% or more
is common in the approximate computing literature (Es-
maeilzadeh et al., 2012a;b; Sampson et al., 2011; Baek
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& Chilimbi, 2010; Misailovic et al., 2010). For example,
Park et al. develop neural surrogates of programs for
image processing, audio processing, and speech processing,
and they collect user feedback on the perceptual quality
of the approximate programs (Park et al., 2016). Their
results show that, on a majority of the benchmarks they
consider, a quality loss of > 10% is deemed acceptable
by > 80% of users. The neural surrogates we train achieve
commensurate and often lower test error than the surrogates
of Esmaeilzadeh et al. (2012a). Thus, the neural surrogates
we train achieve an acceptable level of approximation.

M. Downcasting Incurs Negligible Error

The neural surrogate architectures we target uses a single-
precision floating-point data type, but many of the programs
we compile in Section 5 use double-precision data types.
For example, 59% of EXESTACKCPN programs use at least
one double-precision datatype and 56% of EXESTACKCPN
programs use exclusively double-precision datatypes.
We now show this implicit downcasting incurs low error
relative to overall neural surrogate approximation error.

Methodology. We generate two versions of each PAR-
ROTBENCHCPN program: one using only the f1oat type
and one using only the double type. This replacement
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Figure 34: Histograms showing testing input losses of each initialization method at the epoch with the lowest validation
loss for EXESTACKCPN testing programs.
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Dataset Size 0%

Program CPN MAML PTS RND
fft 1.3+1.2 06+02 08%£0.1 0.6£0.3
invk2j 1.8+0.6 20£06 2.1£0.5 244+0.8

kmeans 0.14+6.7-1073 0.7+04 01+74-107* 0.240.2
sobel 0.1+£30-1072 02402 02435-1003 0.4+0.3

Dataset Size 0.1%

Program CPN MAML PTS RND

fft 78-107°+1.1-107* 1.9.-107%*+24-10"* 23-107*+46-10* 16-107*+1.1-10~*
invk2j 0.240.2 0.2+0.2 0.2+0.2 0.3+0.3

kmeans 1.3:-10724+1.5-1072 0.1£2.9-1072 33-1002+16-1072 39-10724+2.1-10"2
sobel  0.14+2.0-10"2 4.7-1072+£21-1072 0.1+£23-1072 0.1+1.9-102

Dataset Size 1%
Program CPN MAML PTS RND
fft 36-1075+27-107° 46-107°4+22-107° 1.0-107%*+14-107* 49-10°+28-107°
invk2j 1.5-10724+4.7-107% 1.2-10724+3.7-107% 13-1072+£3.8-103% 12-1072+£3.9-1073
kmeans 4.7-1072*4+5.9-1073% 15-1072+1.1-1072 1.3-10724+9.3-1073 1.3-1072+1.3-1072
sobel 83-1073+49-107% 81-1072+28-10"2 9.1-1073+3.2-1073 6.0-1073+3.2-1073

Dataset Size 10%
Program CPN MAML PTS RND
fft 6.4-107+£9.0-10% 12.-107°4+12-107° 14-10°4+15-107°> 1.3-10°+1.6-107°
invk2j 81-10724+14-1073 6.5-1073+1.7-107%® 72-1073+13-1073% 73-1023+14-103
kmeans 3.9-107%4+5.0-107% 1.3-1072+£7.9-107% 78.1073+7.0-107% 1.3-1072+1.1-1072
sobel  1.7-10724+17-107% 1.6-10734+14-107% 26-1073+19-1073 1.8-10723+1.6-10"3

Dataset Size 100%
Program CPN MAML PTS RND
fft 22:-106+54-107% 1.7-107%+3.1-107% 42-10+56-10% 1.1-1076+1.1-10°6
invk2j 3.3-107%4+15-107* 33-103+65-107* 34-1073+£7.2-107* 3.0-1073+4.8-10"¢
kmeans 3.4-107%4+4.7-107% 14-10724+95-107% 5.2-1073+4.8-1073 81-10"3+4.3-103
sobel 53-107%+79-1075 46-107*+1.1-107* 6.3-107*+85-107° 4.1-107*+8.1-107°

Figure 35: Average test loss achieved by each initialization method on the epoch with the best validation loss for
PARROTBENCHCPN programs. We include a table for each dataset size we evaluated on.
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Benchmark: fft Benchmark: invk27j
Dataset Size CPN MAML PTS Dataset Size CPN MAML PTS
0% 0.76x 1.13x 0.76x 0% 1.35x  1.15x 1.12x
0.1% 2.61x 0.84x 0.77x 0.1% 1.14x  1.21x 1.26 %
1% 1.94x  1.08x 0.54 x 1% 0.83x  0.98x 0.97x
10% 2.54x 1.17x 0.98x 10% 0.90x 1.13x 1.02x
100% 0.70x  0.75x 0.26x 100% 0.93x  0.92x 0.90x
Benchmark: kmeans Benchmark: sobel
Dataset Size CPN MAML PTS Dataset Size CPN MAML PTS
0% 3.68x 0.31x 3.58x 0% 2.84x  1.63x 1.92x
0.1% 5.24 x 0.70x 1.23x 0.1% 1.00x  1.08x 0.77x
1% 8.22x 0.94x 1.08 x 1% 0.75x  0.75x 0.67x
10% 11.97x  1.04x 3.30x 10% 1.17x  1.11x 0.70x
100% 15.74x  0.68x 3.59x 100% 0.77x  0.90x 0.66 x

Figure 36: Geometric mean testing loss improvement over randomly initialized surrogates on PARROTBENCHCPN

programs, grouped by both programs and dataset sizes.

includes arguments, internal variables, and any casts. We
then generate random double-precision inputs according
to the methodology in Section D.3 and execute each version
of each program. We report the mean squared error (MSE)
between the outputs of the single- and double-precision ver-
sions of each program in Figure 68. We deem a downcasting
error acceptable if it is an order of magnitude smaller
than the error incurred by using neural surrogates at all,
compared to the original implementation (see Appendix L).

Results. Figure 69 shows the downcasting error for each
PARROTBENCHCPN program, which we compare to
Figure L from Appendix L. The downcasting error of £ft is
significantly smaller than the surrogate error (1.12 - 10~
vs. 2.0-107%). The downcasting error of invk27 is
significantly smaller than the surrogate error (1.6 - 10711
vs. 5.6-1072). Surprisingly, the downcasting error of
kmeans is too small to be captured by a floating-point
data type, so it registers as 0.0. The downcasting error
of sobel is significantly smaller than the surrogate error
(6.51-1078 vs. 2.3 - 10~3). We conclude that downcasting
from double-precision data types does not significantly
affect the overall neural surrogate approximation, error,
which we have already shown is acceptable in Appendix L.

N. Variable-Input
Support for Initialization Methods

COMPNETs, MAML, and pretrained surrogates each
produce a fixed-size weight vector for initializing sur-
rogates. However, programs in EXESTACKCPN and
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PARROTBENCHCPN have various numbers of inputs. To
support programs in these datasets, we develop strategies
for adapting these initialization methods, and we present
a methodology for choosing the best of these strategies.

Variable-Input Strategies. To develop variable-input
initialization methods, we chose a vector size with as many
parameters as the architecture with the largest number
of inputs we wish to support, defined as the covering
architecture in Section 3, and we developed strategies for
supplying data to unused inputs.

There are two types of padding data we considered:
randomly distributed and constantly zero. With random
padding, any excess inputs are supplied with values from
the same distribution as the primary inputs. With zero
padding, any excess inputs are supplied with zeroes.

There are three phases in which data is supplied to an
initialization method: training the initialization method,
finetuning surrogates initialized by the method, and
evaluating surrogates initialized by the method. Thus, we
categorize the strategies we consider by the type of data
the initialization method is trained on, the type of data the
initialized surrogates are finetuned on, and the type of data
the initialized surrogates are evaluated on. We considered
most permutations of random and zero padding for each of
these three phases. Notably, however, we did not consider
the family of strategies where one finetunes on zero-padded
inputs and evaluates on random-padded inputs because
it seemed unlikely that adding a new source of noise at
inference time would lead to any improvement.
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Dataset Size: 0%
Original True MAML RND

Dataset Size: 0.1%
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Figure 37: Color quantization results for a ground-truth NumPy implementation (“True”) vs. approximate implementations
over various dataset sizes, each on a separate row. In each row, the original image of a baboon is on the left, followed
by images transformed to adhere to a palette of 5 colors.
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Dataset Size CPN MAML PTS RND
0% 2.87-10% £615. 3.03-10%2+394. 3.28-103+129. 3.30-10%+0.0
0.1% 979. + 853. 1.90-10% £594. 1.72-10%+793. 1.46-103 + 583.
1% 410. + 194. 677. £ 267. 631. £+ 226. 615. + 298.
10% 401. + 181. 639. & 169. 576. + 252. 631. + 317.
100% 395. + 184. 627. £+ 237. 498. + 229. 510. + 154.

Dataset Size CPN MAML PTS RND

0% 0.284+0.13 0.204+0.04 0.194+0.03 0.19+0.00

0.1% 0.60+0.16 0.424+0.12 0.454+0.16 0.49+0.09

1% 0.734+0.10 0.63+0.11 0.64+0.09 0.66=+0.12

10% 0.744+0.10 0.624+0.07 0.66+0.12 0.65+0.14

100% 0.744+0.10 0.63+0.11 0.69+0.12 0.68+0.09

Figure 38: Quantitative comparison of end-to-end results produced by various initialization methods on color quantization
with a palette size of 10 colors. (Top) The average mean squared error (MSE) of the image produced by each initialization
method compared to the image produced by a ground-truth implementation of the kmeans kernel (lower is better).
(Bottom) The average structural similarity index measure (SSIM) of the image produced by each initialization method

compared to the image produced by a ground-truth implementation of the kmeans kernel (higher is better).

Dataset Size CPN MAML PTS RND
0% 2.74-10% £506. 3.12-103+386. 3.39-10% +81. 3.40-102+0.0
0.1% 906. + 782. 1.84-10% £633. 1.74-10%+801. 1.53-103 + 783.
1% 417. + 166. 647. £+ 250. 588. £ 206. 588. + 250.
10% 404. + 163. 578. £+ 155. 545. £+ 207. 577. £ 279.
100% 392. + 150. 588. £ 204. 477. £ 177. 484. £+ 100.

Dataset Size CPN MAML PTS RND

0% 0.31+0.11 0.18+£0.04 0.16£0.02 0.16+0.00

0.1% 0.61+0.15 0424+0.12 0444+0.16 0.48+0.12

1% 0.71+£0.07 0.63+0.09 0.65+0.08 0.66=+0.08

10% 0.72+0.08 0.64+0.06 0.66=+0.08 0.66+0.11

100% 0.73+£0.07 0.64+0.08 0.69+0.07 0.68=£0.05

Figure 39: Quantitative comparison of end-to-end results produced by various initialization methods on color quantization
with a palette size of 15 colors. (Top) The average mean squared error (MSE) of the image produced by each initialization
method compared to the image produced by a ground-truth implementation of the kmeans kernel (lower is better).
(Bottom) The average structural similarity index measure (SSIM) of the image produced by each initialization method

compared to the image produced by a ground-truth implementation of the kmeans kernel (higher is better).
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Statistic CPN MAML PTS
Oth 0.03x 0.06x  0.03x
25th 1.16x 0.85x% 0.61x
50th 3.43x 1.19x 1.03x
75th 23.96 % 1.68x 1.56 x
100th 8.27-10%3x 26.54x  49.39x
MPI 18th 36th 48th
GM 7.28x 1.16x 0.93x

Figure 40: Geometric mean improvements and percentile
improvements to training time over randomly initialized
surrogates on a sample of 1,000 EXESTACKCPN test
programs. MPI is the minimum percentile at which an
initialization method improves over random initialization.

EXESTACKCPN Training Time

—

— CPN

MAML
— PTS
—— RND

o

Cumulative % of Finished Programs

=}

0 2000 4000 6000 8000

Epoch

10000 12000 14000

Figure 41: Epoch vs. percentage of EXESTACKCPN pro-
grams that each initialization method finished at that epoch.

Statistic CPN MAML PTS

Oth 0.39x 0.38x 0.42x
25th 0.54 x 0.63x  0.57x
50th 1.01x 0.96 x 0.83 %
75th 108.21x 1.07x 7.91x
100th 849.78x 25.66x 278.11x
MPI 50th 54th 60th
GM 4.31x 1.07x 2.35%

Figure 42: Training time improvements at over random ini-
tialization on PARROTBENCHCPN. We include percentiles
from Oth to 100th, the minimum percentile of improvement
(MPI), and the overall geometric mean improvement (GM).
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Program CPN MAML PTS
fft 1.43x 0.83x 0.80x
invk2j 0.49x 0.65x 0.56 %
kmeans 674.47x 2.15x 86.87x
sobel 0.74x 1.14x 0.79x

Figure 43: Geometric mean training time improvements
over random initialization on PARROTBENCHCPN.

Methodology. To decide which strategy to use for
each initialization method, we performed the PARROT-
BENCHCPN data efficiency evaluation of Section 5.2 with
a set of padding strategies applied to each initialization
method. For each initialization method, we chose the strat-
egy that achieved the greatest overall test loss improvement
over random initialization. Note that these experiments
were performed prior to adding variable-output support,
so we split the £ ft and invk2 j benchmarks in PARROT-
BENCHCPN into multiple programs—one for each output.

Results. We present the results in separate figures for
random initialization (Figure 70), pretrained surrogates
trained on random-padded and zero-padded inputs
(Figures 71 and 72), MAML initializations trained on
random-padded and zero-padded inputs (Figures 73 and
74), and COMPNETS trained on random-padded and
zero-padded inputs (Figures 75 and 76).

Random initialization sees performance degradation
with every padding strategy. One explanation for this
degradation is that the baseline is random initialization with
an architecture that has exactly as many inputs as needed,
whereas each of the padding strategies operates on the
covering architecture. Since the magnitude of weights in
the He initialization is inversely proportional to the fan-in
and fan-out of a neuron (He et al., 2015), the magnitude
of weights in the first layer of the network will be smaller,
potentially slowing convergence.

Surrogates that are pretrained on random-padded inputs
perform approximately as well as surrogates pretrained on
zero-padded inputs for all finetuning and evaluation variants.
Among the finetuning and evaluation variants, finetuning
and evaluating on zero-padded inputs performs the best.
The best configuration by a small margin is pretraining on
random-padded inputs and finetuning and evaluating on
zero-padded inputs; this configuration achieves a geometric
mean test loss improvement of 1.13x.

Across all finetuning and evaluation modes, MAML
initializations trained on zero-padded inputs outperform
MAML initializations trained on random-padded inputs.
When MAML initializations are trained on zero-padded
inputs, finetuning and evaluating on zero-padded inputs
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Figure 44: Histogram of initial training losses (top) and initial testing losses (bottom) for surrogates produced by each
initialization method in the training time evaluation, as well as a histogram of the target testing losses set by random
initialization after training for 5,000 epochs. Losses are not averaged across instances of initialization methods and trials.
Note that both the = and y axes are log-scale.
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Program  CPN (0) CPN (1) CPN (2) CPN
fft 048 +1.81-107% 0.43+8.51-107% 2.944+6.80-10"° 1.28+1.20
invk2j 1.14+5.67-107% 1.904+8.89-107*% 2.544+1.52-10"2 1.86+0.58
kmeans 0.12+1.44-107° 0.094+1.33-107% 0.084+1.20-10"° 0.10+0.02
sobel  0.09+3.62-107* 0.13+4.21-10~* 0.17+3.72-10~* 0.13+0.03
Program  MAML (0) MAML (1) MAML (2) MAML
£ft 0.57+0.18 0.594+0.19 0.53+0.14 0.56+0.16
invk2j 2.084+0.64 2.07+£0.59 2.024+0.56 2.06+0.58
kmeans 0.76+0.46 0.64+0.38 0.79+0.52 0.73+0.44
sobel  0.24+0.16 0.18+0.12 0.25+0.22 0.22+0.17
Program  PTS (0) PTS (1) PTS (2) PTS
fft 0.83 +0.07 0.84 +0.07 0.84 +0.07 0.84 +0.07
invk23j 2.1140.57 2.10 £ 0.56 2.1240.59 2.114+0.55
kmeans 0.10+1.92-10"° 0.10+1.88-10"° 0.10+1.87-107° 0.10+1.34-1073
sobel  0.184+4.37-107%* 0.19+4.40-10"* 0.19+4.43-10"* 0.19+3.55-1073

Program RND

fft 0.64 £0.35
invk2j 2.37+£0.80
kmeans 0.24 +0.25
sobel 0.36 £0.34

Figure 45: Average initial train loss on PARROTBENCHCPN for surrogates produced by each initialization method. We
include a column for each instance of an initialization method (e.g., “CPN (0)” is only one of the COMPNETSs we trained)
as well as a column that averages over each instance (e.g., “CPN” is an average over all COMPNETSs we trained).
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Program  CPN (0) CPN (1) CPN (2) CPN

fft 0.48£0.00 0.42+£0.00 292+0.00 1.27+1.18
invk2j 1.14+0.00 1.89+0.00 2.51£0.00 1.84+0.57
kmeans 0.06 £0.00 0.06+0.00 0.05£0.00 0.06=*0.01
sobel 0.09£0.00 0.13£0.00 0.17+0.00 0.13+0.03

Program MAML (0) MAML (1) MAML (2) MAML

fft 0.57+0.18 0.59£0.19 0.53+0.14 0.56+£0.17
invk2j 2.07£0.63 2.06+£0.59 2.01+£0.56 2.05=£0.57
kmeans 0.71£043 0.60+0.37 0.74£0.50 0.68+0.42
sobel 0.24+0.16 0.18£0.12 0.25+0.22 0.22+0.17

Program  PTS (0) PTS (1) PTS (2) PTS

fft 0.83+0.07 0.84+£0.07 085+0.07 0.84+0.07
invk2j 2.09+0.57 2.09£0.56 2.11+£0.58 2.10+0.55
kmeans 0.06 +£0.00 0.0640.00 0.064+0.00 0.06+7.58-10"4
sobel 0.184+0.00 0.194£0.00 0.194£0.00 0.19+3.52-1073

Program RND

fft 0.64 + 0.36
invk2j 2.36 £0.80
kmeans 0.21 +0.23
sobel 0.36 = 0.34

Figure 46: Average initial test loss on PARROTBENCHCPN for surrogates produced by each initialization method. We
include a column for each instance of an initialization method (e.g., “CPN (0)” is only one of the COMPNETSs we trained)
as well as a column that averages over each instance (e.g., “CPN” is an average over all COMPNETSs we trained).

Program RND

fft 3.96-10°
invk2j 2.83-1073
kmeans 0.01

sobel 4.16-104

Figure 47: Target test loss for each PARROTBENCHCPN program, set by training randomly initialized surrogates for 5,000
epochs over 9 trials and using the average final test loss.
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Program  CPN-R Z/Z (Clone) (0) CPN-RZ/Z (Clone) (1) CPN-R Z/Z (Clone) (2) CPN-R Z/Z (Clone)

fft 379.7£31.5 262.0 £15.9 1140.7 £40.3 594.1 £ 398.0
invk2j 15000.0 £ 0.0 9200.7 £ 885.0 12581.3 4+ 1956.4 12260.7 = 2700.6
kmeans 12.0%£1.5 6.0+ 0.0 6.0+ 0.0 8.0+ 3.0

sobel 11316.7 £ 2774.9 10637.0 = 2332.6 4232.3 £ 2168.6 8728.7 +4008.5

Program MAML-Z Z/Z (Reinit) (0) MAML-Z Z/Z (Reinit) (1) MAML-Z Z/Z (Reinit) (2) MAML-Z Z/Z (Reinit)

£t 649.3 + 469.7 824.0 + 527.4 1069.0 + 1047.5 847.4 +722.4
invk2j 9837.3 4 5124.5 5327.7 + 4358.9 13949.0 %+ 3153.0 9704.7 + 5464.3
kmeans 198.7 & 192.1 13338.7 & 4984.0 5018.0 & 7486.5 6185.1 + 7449.2
sobel  5695.7 + 3764.1 6572.7 + 5221.4 3668.3 + 2193.8 5312.2 + 3970.6
Program  PTS (0) PTS (1) PTS (2) PTS
£t 459.3 +241.2 1384.7£1098.1  1024.3 + 1087.0  956.1 &+ 950.3
invk2j 13794.3 £3345.0 12470.3 £ 5072.0 6632.7 & 5282.7 10965.8 & 5477.0
kmeans  188.0 + 36.3 58.7 + 42.3 18.34+ 1.0 88.3 £ 80.0

sobel 9964.0 + 4035.9 5436.7 £ 120.1 7555.7 £ 485.2 7652.1 = 2939.6

Program RND

fft 693.0 £+ 689.0

invk2j 5835.7 +5133.0
kmeans  5098.7 4 7429.2
sobel 5881.0 4+ 3900.7

Figure 48: Average epoch at which each initialization method achieves the target testing loss for the training time evaluation
on PARROTBENCHCPN. We include a column for each instance of an initialization method (e.g., “CPN (0)” is only one
of the COMPNETSs we trained), as well as a column that averages over all instances of an initialization method (e.g., “CPN”
is an average over all COMPNETs we trained).
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Program CPN (0) CPN (1) CPN(2) CPN

£Ft 0/9 0/9 0/9 0/27
invk2j 9/9 0/9 3/9 12/27
kmeans 0/9 0/9 0/9 0/27
sobel  0/9 0/9 0/9 0/27

Program MAML (0) MAML (1) MAML (2) MAML

Fre 0/9 0/9 0/9 0/27
invk2j 4/9 1/9 8/9 13/27
kmeans 0/9 8/9 3/9 11/27
sobel  1/9 2/9 0/9 3/27

Program PTS (0) PTS(l1) PTS(2) PTS

fFre 0/9 0/9 0/9 0/27
invk23y  7/9 7/9 1/9 15/27
kmeans 0/9 0/9 0/9 0/27
sobel 3/9 0/9 0/9 3/27

Program  RND

fft 0/9
invk23 0/9
kmeans 3/9
sobel 1/9

Figure 49: Number of trials where each initialization method does not achieve the target test loss after training for
15,000 epochs during the training time evaluation on PARROTBENCHCPN. We include a column for each instance of an
initialization method (e.g., “CPN (0)” is only one of the COMPNETs we trained) as well as a column that sums over each
instance (e.g., “CPN” is a sum over all COMPNETSs we trained).
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££t True vs. Predicted (Train Set, Input 0, Output 0)
(Trained on 0% of Training Inputs)

££t True vs. Predicted (Train Set, Input 0, Output 1)
(Trained on 0% of Training Inputs)
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Figure 50: Visual comparisons of the ground-truth £ft function from PARROTBENCHCPN and neural surrogate
approximations thereof. We include results for all dataset sizes evaluated in Section 5.2, and we include plots for each
output of the kernel when the input is varied.
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invk2j True vs. Predicted (Train Set, Input 0, Output 0)
(Trained on 0% of Training Inputs)

invk2j True vs. Predicted (Train Set, Input 0, Output 1)
(Trained on 0% of Training Inputs)
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Figure 51: Visual comparisons of the ground-truth invk2 j function from PARROTBENCHCPN and neural surrogate
approximations thereof, when the first input is varied. We include results for all dataset sizes evaluated in Section 5.2,
and we plot each output of the kernel when the input is varied.
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invk2j True vs. Predicted (Train Set, Input 1, Output 0)
(Trained on 0% of Training Inputs)

invk2j True vs. Predicted (Train Set, Input 1, Output 1)
(Trained on 0% of Training Inputs)
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Figure 52: Visual comparisons of the ground-truth invk2 j function from PARROTBENCHCPN and neural surrogate
approximations thereof, when the second input is varied. We include results for all dataset sizes evaluated in Section 5.2,
and we plot each output of the kernel when the input is varied.
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Figure 53: Visual comparisons of the ground-truth kmeans function from PARROTBENCHCPN and neural surrogate
approximations thereof, when the first input is varied. We include results for all dataset sizes evaluated in Section 5.2.
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Figure 54: Visual comparisons of the ground-truth kmeans function from PARROTBENCHCPN and neural surrogate
approximations thereof, when the second input is varied. We include results for all dataset sizes evaluated in Section 5.2.
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Figure 55: Visual comparisons of the ground-truth kmeans function from PARROTBENCHCPN and neural surrogate
approximations thereof, when the third input is varied. We include results for all dataset sizes evaluated in Section 5.2.
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kmeans True vs. Predicted (Train Set, Input 3, Output 0)
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Figure 56: Visual comparisons of the ground-truth kmeans function from PARROTBENCHCPN and neural surrogate
approximations thereof, when the fourth input is varied. We include results for all dataset sizes evaluated in Section 5.2.
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kmeans True vs. Predicted (Train Set, Input 4, Output 0)
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Figure 57: Visual comparisons of the ground-truth kmeans function from PARROTBENCHCPN and neural surrogate
approximations thereof, when the fifth input is varied. We include results for all dataset sizes evaluated in Section 5.2.
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Figure 58: Visual comparisons of the ground-truth kmeans function from PARROTBENCHCPN and neural surrogate
approximations thereof, when the sixth input is varied. We include results for all dataset sizes evaluated in Section 5.2.

55



Learning to Compile Programs to Neural Networks
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Figure 59: Visual comparisons of the ground-truth sobel function from PARROTBENCHCPN and neural surrogate
approximations thereof, when the first input is varied. We include results for all dataset sizes evaluated in Section 5.2.
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sobel True vs. Predicted (Train Set, Input 1, Output 0)
(Trained on 0% of Training Inputs)
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Figure 60: Visual comparisons of the ground-truth sobel function from PARROTBENCHCPN and neural surrogate
approximations thereof, when the second input is varied. We include results for all dataset sizes evaluated in Section 5.2.
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sobel True vs. Predicted (Train Set, Input 2, Output 0)
(Trained on 0% of Training Inputs)
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Figure 61: Visual comparisons of the ground-truth sobel function from PARROTBENCHCPN and neural surrogate
approximations thereof, when the third input is varied. We include results for all dataset sizes evaluated in Section 5.2.
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sobel True vs. Predicted (Train Set, Input 3, Output 0)
(Trained on 0% of Training Inputs)
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Figure 62: Visual comparisons of the ground-truth sobel function from PARROTBENCHCPN and neural surrogate
approximations thereof, when the fourth input is varied. We include results for all dataset sizes evaluated in Section 5.2.
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sobel True vs. Predicted (Train Set, Input 4, Output 0)
(Trained on 0% of Training Inputs)
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Figure 63: Visual comparisons of the ground-truth sobel function from PARROTBENCHCPN and neural surrogate
approximations thereof, when the fifth input is varied. We include results for all dataset sizes evaluated in Section 5.2.
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Figure 64: Visual comparisons of the ground-truth sobel function from PARROTBENCHCPN and neural surrogate
approximations thereof, when the sixth input is varied. We include results for all dataset sizes evaluated in Section 5.2.

61



Learning to Compile Programs to Neural Networks

sobel True vs. Predicted (Train Set, Input 6, Output 0)
(Trained on 0% of Training Inputs)

0.75
0.50
0.25
2 0.00
g — CPN
—0.257 MAML
—0.50{ — PTS
—— RAND
—0.751 —— True
0.0 0.2 0.4 0.6 0.8
sobel True vs. Predicted (Train Set, Input 6, Output 0)
(Trained on 0.1% of Training Inputs)
9 —— CPN
—— MAML
— PTS
14 —— RAND
5 — True
=
8 0
-1
-2
0.0 0.2 0.4 0.6 0.8
sobel True vs. Predicted (Train Set, Input 6, Output 0)
(Trained on 1.0% of Training Inputs)
2
1
i
=
30 — CPN
—— MAML
-1 — PTS
—— RAND
i) —— True
0.0 0.2 0.4 0.6 0.8
sobel True vs. Predicted (Train Set, Input 6, Output 0)
(Trained on 10.0% of Training Inputs)
1.5
1.0
Z 05
f=9
=
S 00
—0.5
—1.0
0.0 0.2 0.4 0.6 0.8
sobel True vs. Predicted (Train Set, Input 6, Output 0)
(Trained on 100% of Training Inputs)
—— CPN
1.01 —— MAML
— PTS
081 — RaND
é 06 —— True
=
o
0.4
0.2
0.0
0.0 0.2 0.4 0.6 0.8
Input

Figure 65: Visual comparisons of the ground-truth sobel function from PARROTBENCHCPN and neural surrogate
approximations thereof, when the seventh input is varied. We include results for all dataset sizes evaluated in Section 5.2.
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Figure 66: Visual comparisons of the ground-truth sobel function from PARROTBENCHCPN and neural surrogate
approximations thereof, when the eighth input is varied. We include results for all dataset sizes evaluated in Section 5.2.
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Figure 67: Visual comparisons of the ground-truth sobel function from PARROTBENCHCPN and neural surrogate
approximations thereof, when the ninth input is varied. We include results for all dataset sizes evaluated in Section 5.2.
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Benchmark CPN MAML PTS RND PRT E2E Error
fft 43-107% 3.1-100% 53.-10% 3.2-1076|20-107° 7.22%
invk2 7 3.3-107% 33-100% 34-1073% 3.1-107% | 5.6-107% 7.50%
kmeans 34-1073% 1.3-1072 52-1073% 83-107% | 1.7-107% 6.18%
sobel 54-10% 45-107* 6.3-107%* 4.2-107%* | 2.3-1073 3.44%

Figure 68: MSE on PARROTBENCHCPN testing set for each initialization method, MSE of the neural surrogates Es-
maeilzadeh et al. (2012a) train (PRT), and end-to-end error achieved by the surrogates of Esmaeilzadeh et al. (E2E Error).

Benchmark float vs. double MSE

fft 1.2-10714
invk2 1.6-10~11
kmeans 0.0

sobel 6.51-1078

Figure 69: MSE between PARROTBENCHCPN implementations that solely use the £ 1oat datatype and implementations
that solely use the double datatype. To calculate MSE, each program is evaluated on all inputs from double-precision
versions of the training and testing set of PARROTBENCHCPN, and MSE is computed using the programs’ outputs.

leads to the greatest geometric mean test loss improvement
of 1.29x over random initialization.

Across all finetuning and evaluation modes, COMPNET
initializations trained on random-padded inputs outperform
COMPNET initializations trained on zero-padded inputs.
When COMPNET initializations are trained on random-
padded inputs, finetuning and evaluating on zero-padded
inputs leads to the greatest geometric mean test loss
improvement of 1.96 x over random initialization.

Conclusion. In light of these results, we make the
following decisions. We choose COMPNETs that are trained
on random-padded inputs and the surrogates they produce
are finetuned and evaluated on zero-padded inputs. We
choose MAML initializations that are trained, finetuned,
and evaluated on zero-padded inputs. We choose pretrained
surrogates that are pretrained on random-padded inputs and
finetuned and evaluated on zero-padded inputs. We choose
standard random initialization over any of the padded
variants (i.e., we make the topology match the program’s
input-output signature).

The reason why some initialization methods perform better
when training on random-padded inputs and others perform
better when training on zero-padded inputs is unclear and
we believe deserves further study.

O. Variable-Output
Support for Initialization Methods

Recall, all programs in EXESTACKCPN have a single
output (Section 4). However, the £ft and invk2j
benchmarks in PARROTBENCHCPN have multiple outputs.

In this appendix, we propose and evaluate a set of strategies
to adapt initialization methods trained on EXESTACKCPN
to support variable-output programs.

Methodology. For each initialization method, we produce
a neural surrogate initialization, then we apply one of the
following strategies:

* Grow: Use the initialization produced by the method
and extend the final layer with randomly initialized
weights to reach the target number of outputs.

* Reinitialize: Use the initialization produced by the
initialization method but randomly initialize the final
layer, sized to match the target number of outputs.

¢ Clone: Use the initialization produced by the initial-
ization method but duplicate the weights for the one
active output in the final layer of the initialization, to
generate weights for the target number of outputs.

To decide which strategy to use for each initialization
method, we performed the PARROTBENCHCPN data
efficiency evaluation of Section 5.2, and we swept over a set
of variable-output strategies applied to each initialization
method. We used initialization methods that support
variable-input programs, using the best strategies from
Appendix N. For each initialization method, we choose
the strategy that achieves the greatest overall test loss
improvement over random initialization.

Results. We present the results for COMPNETs, MAML,
and pretrained surrogates in Figures 77, 78, and 79.
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Program RND RND FT-R EV-R  RND FT-R EV-Z RND FT-Z EV-Z
fft (0) 1.00x 0.02x 0.02x 0.19x%
£t (1) 1.00x  0.18x 0.23x 1.06x
invk23j(0) 1.00x 0.45% 0.53x 1.00x
invk2j (1) 1.00x 0.31x 0.32x 0.82x
kmeans 1.00x 0.64x 0.65x 0.83x
sobel 1.00x 1.00x 1.00x 1.00x

Dataset Size RND RND FT-R EV-R  RND FT-REV-Z RND FT-Z EV-Z

0% 1.00x 0.80x 0.80x 0.80x
0.1% 1.00x 0.05x 0.08 x 0.51x
1% 1.00x 0.10x 0.10x 0.39x
10% 1.00x  0.22x 0.23 % 1.01x
100% 1.00x  1.22x 1.29x 1.18x

Statistic RND RND FT-R EV-R RND FT-REV-Z RND FTI-Z EV-Z

Oth 1.00x 4.46-10*x 6.03-10"*x 0.01x
25th 1.00x 0.27x 0.30x 0.92x
50th 1.00x 0.83x 0.86x 1.00x
75th 1.00x  1.00x 1.00x 1.09x
100th 1.00x  5.64x 6.48 x 1.66 %
MPI 0th 68th 63rd 50th

GM 1.00x 0.26x 0.28 x 0.72x

Figure 70: Data efficiency results for PARROTBENCHCPN programs using variants of random initialization. FT-R and
FT-Z mean the surrogate initialization was finetuned using random-padded and zero-padded inputs, respectively. EV-R
and EV-Z mean the surrogate initialization was evaluated using random-padded and zero-padded inputs, respectively.
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Program PTS-R FT-R EV-R PTS-RFT-REV-Z PTS-RFT-ZEV-Z
fft (0) 0.06 x 0.06 x 1.53x
fft (1) 0.17x 0.19x 0.76 x
invk23j (0) 0.50x% 0.59x 1.18x%
invk2j (1) 0.28x% 0.29x 0.77x
kmeans 1.77x 1.80x 2.28x%
sobel 0.85x 0.85x 0.85x

Dataset Size PTS-R FT-R EV-R PTS-RFI-REV-Z PTS-R FI-ZEV-Z

0% 1.38x% 1.38x 1.38x
0.1% 0.05x 0.06 x 1.26x
1% 0.11x 0.12x 1.03x
10% 0.60x 0.62x 0.94 x
100% 1.33x 1.45x 1.07x

Statistic PTS-R FI-R EV-R  PTS-R FT-R EV-Z PTS-R FT-ZEV-Z

Oth 3.50 - 10~*x 476 - 10~ *x 0.15x%
25th 0.26 x 0.35x 0.75x
50th 0.73x 0.77x 1.07x
75th 1.38x 1.39x 1.65x
100th 28.05x 28.24 % 28.03 x
MPI 66th 65th 47th

GM 0.36x 0.39x 1.13x

Figure 71: Data efficiency results for PARROTBENCHCPN using pretrained surrogates trained with random-padded inputs.
FT-R and FT-Z mean the surrogate initialization was finetuned using random-padded and zero-padded inputs, respectively.
EV-R and EV-Z mean the surrogate initialization was evaluated using random-padded and zero-padded inputs, respectively.
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Program PTS-ZFT-R EV-R PTS-ZFT-R EV-Z PTS-ZFT-ZEV-Z
fft (0) 0.06 x 0.06 x 0.95x
fft (1) 0.24x 0.33x 1.04x
invk23(0) 0.53x 0.62x 1.25x%x
invk23j (1) 0.35x% 0.37x 1.08x
kmeans 0.95x 0.93x 1.31x
sobel 1.07x 1.07x 1.07x

Dataset Size PTS-ZFT-R EV-R PTS-ZFT-REV-Z PTS-ZFT-ZEV-Z

0% 1.58 % 1.58 % 1.58 %
0.1% 0.06x 0.09x 1.17x
1% 0.10x 0.10x 1.09x
10% 0.80x 0.84x 1.12x
100% 0.91x 0.96 x 0.74x

Statistic PTS-Z FI-R EV-R  PTS-ZFI-R EV-Z PTS-ZFT-ZEV-Z

Oth 5.52-10"%x 6.16 - 10~ *x 0.07x
25th 0.37x 0.47x 0.87x
50th 0.84 x 0.84x 1.10x
75th 1.13x 1.19x 1.41x
100th 10.94 x 12.86x 7.41 %
MPI 66th 65th 41st

GM 0.37x 0.41x 1.11x

Figure 72: Data efficiency results for PARROTBENCHCPN using pretrained surrogates trained with zero-padded inputs.
FT-R and FT-Z mean the surrogate initialization was finetuned using random-padded and zero-padded inputs, respectively.
EV-R and EV-Z mean the surrogate initialization was evaluated using random-padded and zero-padded inputs, respectively.
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Program MAML-R FT-R EV-R  MAML-R FT-R EV-Z MAML-R FT-Z EV-Z
£ft (0) 0.06x 0.07x 1.30x
fft (1) 0.32x 0.45x 1.11x
invk23j (0) 0.39x 0.48 x 0.82x
invk23j (1) 0.64x 0.75x 1.13x
kmeans 0.63x 0.65x 0.65x
sobel 0.44 % 0.44x 0.44 %

Dataset Size  MAML-R FT-R EV-R MAML-R FTI-R EV-Z MAML-R FT-Z EV-Z

0% 0.97x 0.97x 0.97x
0.1% 0.06x 0.08x 1.12x
1% 0.12x 0.15x 0.82x
10% 0.51x 0.54 x 0.56 x
100% 1.11x 1.33x 0.90x

Statistic  MAML-R FT-R EV-R MAML-R FT-R EV-Z MAML-R FTI-Z EV-Z

Oth 7.16-10"%x 7.54-10"%x% 0.07x
25th 0.27x 0.32x 0.52x
50th 0.54 x 0.58 x 0.87x
75th 0.95x 0.99x 1.39x
100th 12.03 x 16.94 % 15.18x
MPI 79th 76th 65th

GM 0.33x 0.39x 0.85x

Figure 73: Data efficiency results for PARROTBENCHCPN using MAML initializations trained with random-padded inputs.
FT-R and FT-Z mean the surrogate initialization was finetuned using random-padded and zero-padded inputs, respectively.
EV-R and EV-Z mean the surrogate initialization was evaluated using random-padded and zero-padded inputs, respectively.
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Program MAML-Z FT-R EV-R  MAML-Z FT-R EV-Z MAML-Z FT-Z EV-Z
fft (0) 0.18x 0.21x 2.85%
fft (1) 0.54x 0.69 % 1.16x
invk2j(0) 0.62x 0.77x 1.35%
invk23j (1) 0.50x 0.56x 1.11x
kmeans 0.88x% 0.91x 1.04x
sobel 0.89x 0.89x 0.89x

Dataset Size MAML-Z FI-R EV-R  MAML-ZFT-R EV-Z MAML-Z FT-ZEV-Z

0% 1.35x% 1.34x 1.34x
0.1% 0.06 % 0.08 x 1.40x
1% 0.14x 0.17x 1.38x
10% 1.34 % 1.44 % 1.16 %
100% 2.60x 2.89 % 1.19x

Statistic MAML-Z FT-R EV-R MAML-Z FT-R EV-Z MAML-Z FT-Z EV-Z

Oth 7.14-107*x 1.08 - 1073 x 0.29x
25th 0.41x 0.46x 0.86x
50th 0.88x 0.91x 1.10x
75th 1.42x 1.43x 1.50x
100th 57.67x 76.44x 13.85x%
MPI 56th 55th 39th

GM 0.53x 0.61x 1.29x

Figure 74: Data efficiency results for PARROTBENCHCPN using MAML initializations trained with zero-padded inputs.
FT-R and FT-Z mean the surrogate initialization was finetuned using random-padded and zero-padded inputs, respectively.
EV-R and EV-Z mean the surrogate initialization was evaluated using random-padded and zero-padded inputs, respectively.
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Program CPN-R FT-REV-R CPN-RFT-REV-Z CPN-R FT-ZEV-Z
£t (0) 0.88x 0.99x 7.18x%
fft (1) 0.48 % 0.73x 1.17x
invk23j (0) 0.56x 0.73x 1.09x
invk23j (1) 0.55x% 0.62x 1.04x
kmeans 4.12% 4.26 x 5.22x
sobel 1.14x 1.14x 1.14x

Dataset Size CPN-RFT-R EV-R  CPN-RFTI-R EV-Z CPN-R FT-Z EV-Z

0% 1.42x 1.42x 1.42x
0.1% 0.09x 0.14x 2.33x
1% 1.11x 1.44x 2.56 x
10% 1.89x 1.99x 2.18x%
100% 2.42 % 2.57x 1.57x

Statistic CPN-R FT-R EV-R  CPN-R FT-R EV-Z CPN-R FT-Z EV-Z

Oth 1.18-1073x 1.47-1073x 0.19x
25th 0.49x 0.60x 0.86x
50th 0.99x 1.01x 1.22x
75th 2.17x 2.20x 2.31x
100th 171.49% 191.02x 1478.96 %
MPI S1st 48th 35th

GM 0.92x 1.08x 1.96x

Figure 75: Data efficiency results for PARROTBENCHCPN programs using COMPNETS trained on random-padded inputs.
FT-R and FT-Z mean the surrogate initialization was finetuned using random-padded and zero-padded inputs, respectively.
EV-R and EV-Z mean the surrogate initialization was evaluated using random-padded and zero-padded inputs, respectively.
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Program

CPN-ZFT-REV-R CPN-ZFT-REV-Z CPN-ZFT-ZEV-Z

££t (0)
£t (1)
invk27 (0)
invk2j (1)
kmeans
sobel

0.02x
0.24x
0.47x
0.60x
1.45x%
0.91x

0.02x
0.28x
0.61x
0.67x
1.51x
0.91x

0.58 %
1.06 x
1.07x
1.62x
1.78
0.91x

Dataset Size

CPN-Z FT-R EV-R

CPN-Z FT-R EV-Z

CPN-Z FT-ZEV-Z

0% 1.50% 1.51x 1.51x
0.1% 0.05 % 0.07x 0.88x
1% 0.10x 0.12x 1.33x
10% 0.40x 0.45x 0.66 %
100% 1.65x 1.75x 1.36x
Statistic CPN-Z FT-R EV-R CPN-ZFT-REV-Z CPN-ZFI-ZEV-Z
Oth 3.05- 10 *x 5.88 10 %x 1.52- 10 *x
25th 0.39x 0.42x 0.77x
50th 0.79x 0.82x 1.14x
75th 1.31x 1.37x 1.60x
100th 70.29x 70.97 x 69.18x
MPI 63rd 59th 38th
GM 0.35x 0.39x 1.10x

Figure 76: Data efficiency results for PARROTBENCHCPN programs using COMPNETs trained on zero-padded inputs.
FT-R and FT-Z mean the surrogate initialization was finetuned using random-padded and zero-padded inputs, respectively.
EV-R and EV-Z mean the surrogate initialization was evaluated using random-padded and zero-padded inputs, respectively.
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Program

CPN-R Z/Z (Grow)

CPN-R Z/Z (Reinit)

CPN-R Z/Z (Clone)

fft
invk2j
kmeans
sobel

0.95x
0.86x
7.85x%
1.14x

1.49x
1.01x
1.77x
1.12x

1.47x
1.01x
7.85X%
1.14x

Dataset Size

CPN-R Z/Z (Grow)

CPN-R Z/Z (Reinit)

CPN-R Z/Z (Clone)

0% 1.86 x 0.95x 1.81x
0.1% 1.61x 1.46 % 1.98x
1% 1.49x 1.40x 1.77x
10% 2.13x 1.93x 2.38x
100% 1.26x 1.05x 1.68x
Statistic CPN-R Z/Z (Grow) CPN-R Z/Z (Reinit) CPN-R Z/Z (Clone)
Oth 0.17x 0.33x 0.22x
25th 0.79x% 0.85x% 0.88x
50th 1.05x 1.13x 1.23x
75th 1.96x 1.76x 2.96x
100th 106.91 x 31.55 % 106.91 x
MPI 42nd 33rd 36th
GM 1.64x 1.31x 1.91x

Figure 77: Data efficiency results for PARROTBENCHCPN programs using COMPNETs trained on various variable-output
strategies. CPN-R means we train the COMPNETs on random-padded inputs. Z/Z means we finetune and evaluate
COMPNET-initialized surrogates on zero-padded inputs (see Appendix N).
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Program

MAML-Z Z/Z (Grow)

MAML-Z Z/Z (Reinit)

MAML-Z Z/Z (Clone)

fft
invk2j
kmeans
sobel

0.65x
1.06x
0.94x
0.89x

0.98 x
1.07x
0.68x
1.06 x

0.63x
0.88 %
0.94 %
0.89x

Dataset Size

MAML-Z Z/Z (Grow)

MAML-Z Z/Z (Reinit)

MAML-Z Z/Z (Clone)

0% 1.42x 0.90x 1.42x
0.1% 0.92x 0.94% 0.73 %
1% 0.73x 0.93x 0.51x
10% 0.88x 1.11x 0.94 %
100% 0.60x 0.81x 0.75%
Statistic MAML-Z Z/7Z (Grow) MAML-Z 7Z/7. (Reinit) MAML-Z Z/Z (Clone)
Oth 0.15x 0.28 % 0.05x
25th 0.64 x 0.82x 0.64x
50th 0.92x 0.97x 0.85x
75th 1.14x 1.14x 1.16x
100th 4.01x 1.99x 8.00x
MPI 58th 54th 66th
GM 0.87x 0.93 % 0.82x

Figure 78: Data efficiency results for PARROTBENCHCPN programs using MAML initializations trained on various
variable-output strategies. MAML-Z means we train the MAML initializations on zero-padded inputs. Z/Z means we
finetune and evaluate MAML-initialized surrogates on zero-padded inputs (see Appendix N).
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Program  PTS-R Z/Z (Grow) PTS-R Z/Z (Reinit) PTS-R Z/Z (Clone)

fft 0.61x 0.88x 0.46 x
invk2j 1.05x 0.95x% 1.12x
kmeans 2.24X 0.65x 2.24x
sobel 0.85x 0.92x 0.85%

Dataset Size PTS-R Z/Z (Grow) PTS-R Z/Z (Reinit) PTS-R Z/Z (Clone)

0% 1.56x 0.79x% 1.65x
0.1% 0.98 % 0.93 % 0.81x
1% 0.79x 0.87x 0.75x
10% 1.23x 1.00x 1.00x
100% 0.86x 0.67x 0.98x

Statistic PTS-R Z/Z (Grow) PTS-R Z/Z (Reinit) PTS-R Z/Z (Clone)

Oth 0.23 x 0.22x 0.21x
25th 0.75%x 0.77x 0.65x
50th 0.97x 0.93x 0.85x
75th 1.26x 1.04x 1.40x
100th 38.18x 1.86x 38.18x
MPI 54th 69th 63rd
GM 1.05x 0.84x 1.00x

Figure 79: Data efficiency results for PARROTBENCHCPN programs using pretrained initializations trained on various
variable-output strategies. PTS-R means we train the pretrained initializations on random-padded inputs. Z/Z means we
finetune and evaluate pretrain-initialized surrogates on zero-padded inputs (see Appendix N).
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The best-performing strategy for COMPNETS is cloning,
with a geometric mean test loss improvement of 1.91x,
the best-performing strategy for MAML is reinitialization,
with a geometric mean test loss improvement of 0.93x,
and the best-performing strategy for pretrained surrogates
is growing, with a geometric mean test loss improvement
of 1.05x. Note that the ££t and invk27j benchmarks are
the only programs where the variable-output strategies are
necessary, but we perform each strategy indiscriminately.
This indiscriminate application harms performance for
the reinitialization strategy on kmeans and sobel
when using COMPNETs and pretrained surrogates. For
COMPNETS in particular, if we only applied each strategy
where necessary, reinitialization would have outperformed
cloning by a small margin.

Conclusion. In light of these results, we make the
following decisions. We choose the cloning strategy for
COMPNETS, the reinitialization strategy for MAML, and
the growing strategy for pretrained surrogates.
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