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Abstract

In 2017, Eisenbrand and Weismantel improved a longstanding runtime bound for pseudo-
polynomial integer programming algorithms with a fixed number of constraints, m, most notably
dropping an exponent of O(m2) to an exponent of only O(m) [2].

Their secret weapon? The Steinitz Lemma, an unassuming statement on the existence of
vector walks that don’t stray too far from the origin [15]. In this reading paper we contrast
Eisenbrand and Weismantel’s approach with Papadimitriou’s previously-state-of-the-art result
from 1981 [14]. We then provide intuition for Jansen and Rohwedder’s 2019 improvement to the
coefficients of this new algorithm [8]. Along the way, we explore connections between combina-
torial optimization and linear algebra.

1 Introduction

Integer linear programs, often referred to as integer programs (IPs) (Section 3), are a natural way
to reason about, solve, and approximate many NP-hard problems. Fundamental advancements in
our understanding of IPs can thus provide insight into many other interesting domains including
scheduling, voting, and graph coloring problems [7, 11, 4].

In just the past five years, researchers have significantly improved runtimes for now-classical state-of-
the-art result for IPs [2, 10]. In this reading paper, we contextualize and provide intuition for one such
advancement: Eisenbrand and Weismantel’s improved pseudo-polynomial algorithm for IPs with a
fixed number of constraints. Building on Papadimitriou’s generalization of the dynamic programming
pseudo-polynomial algorithm from 1981 [14] (Section 4), Eisenbrand and Weismantel dramatically
reduce Papadimitriou’s search space (Section 5) by reasoning directly about intermediate outputs
rather than intermediate inputs (Section 6). Their secret weapon? The Steinitz Lemma (Section 7),
an unassuming statement on the existence of vector walks that don’t stray too far from the origin
[15, 5]. To use this bound, Eisenbrand and Weismantel must modify Papadimitriou’s DP, replacing
it with Bellman-Ford (Section 8).

Though this Steinitz-based algorithm is a big improvement over Papadimitriou, we discuss a recent
improvement by Jansen and Rohwedder [8] that takes advantage of the shape of Eisenbrand and
Weismantel’s search space to construct a fuzzy divide-and-conquer strategy, improving the coefficients
of the algorithm (Section 9). Finally we ask: can we do better (Section 10)? Unfortunately, this is
quite unlikely. Knop et al. recently proved Eisenbrand and Weismantel’s approach is probably optimal
for general IPs, assuming 3-SAT runs in exponential time [12]. We conclude by looking at the bigger
picture and suggesting there is something more fundamental to the structure of fast(ish) algorithms
for IPs (Section 11).

∗equal contribution
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2 Notation

2.1 Norms

The IP algorithms we discuss in this paper search over integer coordinates in Euclidean space. Norms
bound these spaces, so we briefly review their important properties.

Definition 1: Norm

A norm, ‖·‖ : Rm → R≥0, is a function that satisfies the following:
1. triangle inequality: ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x,y ∈ Rm
2. absolute homogeneity: ‖ax‖ = |a| ‖x‖ for all a ∈ R and x ∈ Rm
3. positive definite: ‖x‖ = 0 iff x = 0 for all x ∈ Rm

Though we often care about the 2-norm, ‖x‖2 =
√∑

i xi, in this paper we are concerned with norms
that connect more closely to the computational size of a vector:

• 1-norm ‖·‖1: ‖x‖1 =
∑
i |xi|

• ∞-norm ‖·‖∞: ‖x‖∞ = maxi |xi|

• max-norm for matrices ‖·‖max: ‖A‖max = maxi,j |ai,j |

We can combine these norms to bound matrix-vector products, which we leave as an exercise for the
reader. Let A ∈ Rm×n and x ∈ Rn. Then

‖Ax‖∞ ≤ ‖A‖max ‖x‖1 ≤ n ‖A‖max ‖x‖∞ . (1)

2.2 Matrices

Throughout our paper, we find it useful to refer to the column vectors of the constraint matrix A.
To keep our notation disjoint from the standard notation Ai for indexing row vectors, we adopt the
convention of referring to the ith column vector of A as ai.

3 IP Generalizes Knapsack

The IPs we will consider in this paper are those in standard form:

max
{
cTx : Ax = b,x ∈ Nn, A ∈ Zm×n, b ∈ Zm, c ∈ Zn

}
.

One can think of this IP as a generalized version of knapsack. Column i of A represents the list of
properties of a particular item (which may be arbitrary integers), say its weight, volume, and price.
The coordinate xi of x represents the number of copies of item i in the knapsack, and we can thus
say x represents a multiset of items. The vector b represents the requirements on the sums of the
properties in the matrix A for all the items in the knapsack. The coordinate ci of c represents the
profit of item i. The goal is thus to maximize the profit of the knapsack subject to a set of constraints
and allowing multiple copies of each item.

4 Dynamic Programming: From Knapsack to IP

Knapsack has a well-known pseudo-polynomial algorithm that runs in time O(nb) where n is the
number of items and b is the total size of the knapsack [6]. In 1981, equipped with the insight that
IP is a generalized form of knapsack, Papadimitriou extended this algorithm to a pseudo-polynomial
algorithm for general IPs (with a fixed number of constraints) [14]. Eisenbrand and Weismantel’s
algorithm builds on the ideas of Papadimitriou, so we first build an intuition for his work.
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4.1 Knapsack

Consider the knapsack problem,

max
{
cTx : aTx = b,x ∈ {0, 1}n,a ∈ Nn, b ∈ N, c ∈ Zn

}
,

where ci and ai are the profit and size of the ith item, respectively, and b is the exact size requirement.1

It has the familiar dynamic program (DP) recurrence:

T (0, v) =

{
0, v = 0

−∞, otherwise

T (i+ 1, v) = max(T (i, v), ci+1 + T (i, v − ai+1))

We compute T (n, b) to solve the problem, building a table of size O(nb). Each entry takes O(1) time
to compute, so we have an O(nb) runtime.

We now incrementally relax the constraints on knapsack and incrementally generalize the recurrence
to obtain an algorithm for a generic IP.

4.2 Multiple Items and Multiple Constraints

We first allow both multiple copies of each item in the knapsack and subject the knapsack items to
arbitrarily many constraints:

max
{
cTx : Ax = b,x ∈ Nn, A ∈ Nm×n, b ∈ Nm, c ∈ Zn

}
.

The DP is nearly unchanged. The biggest difference is that we must search over all possible multi-
plicities for item i that do not exhaust the “budget” granted by the constraint vector b. The value
of k chosen at step i gives us x∗i .

T (0,v) =

{
0, v = 0

−∞, otherwise

T (i+ 1,v) = max
k≥0

(k · ci+1 + T (i,v − k · ai+1))

We compute T (n, b) to solve the problem, building a table of size O(n ‖b‖m∞). Each entry takes

O(‖b‖∞) time to compute, so we have an O(n ‖b‖m+1
∞ ) runtime.

4.3 From Natural to Integral Constraints

We now allow the constraints to be negative:

max
{
cTx : Ax = b,x ∈ Nn, A ∈ Zm×n, b ∈ Zm, c ∈ Zn

}
.

Unlike the previous generalization, this one poses a significant problem: if we use the DP in Section 4.2,
it does not even appear to terminate! Previously, we relied on the fact that ai+1 ∈ Nm \ {0} to give
us an implicit upper bound k ≤ ‖v‖∞. But with negative entries in A, k might be arbitrarily large
in an optimal solution. To guarantee termination, we need an explicit upper bound K for k. With
such a bound, we could use the following DP:

T (0,v) =

{
0, v = 0

−∞, otherwise

T (i+ 1,v) = max
0≤k≤K

(k · ci+1 + T (i,v − k · ai+1))

Papadimitriou’s key contribution was to provide a simple, yet relatively small, value for K.

1Note we can roughly use the same DP to solve the more common knapsack problem aTx ≤ b, where we are allowed
unused space. We need only change the base case T (0, v) to be 0 when 0 ≤ v ≤ b, rather than when v = 0.
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5 Papadimitriou’s DP: As Easy As ∆Abc (to the O(m2))

Recall that the k chosen at step i gives us x∗i , so the crux of our problem is bounding ‖x∗‖∞. After
obtaining this bound, we will have a DP that terminates, but we would, of course, like to know the
runtime. To that end, we additionally bound ‖v‖∞ (the size of intermediate v components) before
composing both bounds to arrive at our final runtime.

In this section, we focus on building intuition for the feasibility problem, but we give a sketch of how
to extend the algorithm to solve the optimization problem (details in [14]).

5.1 Bounding x

Let ∆Ab = max(‖A‖max , ‖b‖∞), i.e., the largest (in magnitude) numeric value in the input. We
present the following variant of Farkas’ lemma without proof, though roughly it follows by using
Cramer’s rule to show that any solution to a matrix-vector equation with an integral nonsingular
matrix must have a bounded, rational solution.

Lemma 1: Integral Farkas’ Lemma

Let A ∈ Zm×k be an integral matrix such that ‖A‖max ≤ ∆Ab. Then exactly one of the
following is true:

1. There exists an x ∈ Nk \ {0} such that ‖x‖∞ ≤ (m∆Ab)m and Ax = 0.
2. There exists a splitting hyperplane, h ∈ Rm, such that ‖h‖∞ ≤ (m∆Ab)m and hTA ≥ 1.

Intuitively, if we interpret the columns of A as force vectors, these vectors can be scaled so their net
force is 0. Otherwise, if such a scaling does not exist, then there is a hyperplane, h, such that all
of the force vectors lie on one side of it. We now use this lemma to find a “small” solution to an
arbitrary IP.

Consider a standard form IP with constraints Ax = b, and suppose we have a feasible solution, x. If
‖x‖∞ ≤ (m∆Ab)m as in Lemma 1, we are done. Otherwise, WLOG reorder the columns of A and
the corresponding entries in x, such that the first k entries in x are strictly larger than (m∆Ab)m and
the rest are at most (m∆Ab)m. We can thus split the constraints into two pieces where Au consists
of the first k columns: [

Au Al
] [xu

xl

]
= Auxu +Alxl = b (2)

Using the integral Farkas’ lemma on Au, we get the following two cases:

Case 1: There exists a yu ∈ Nk \ {0} such that ‖yu‖∞ ≤ (m∆Ab)m and Auyu = 0.

Notice

[
xu − yu

xl

]
is a strictly smaller feasible solution since ‖xu‖∞ > (m∆Ab)m. We can thus

replace our feasible x, re-sort the constraint columns and entries, and apply Farkas’ lemma again.
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We continue until we hit the other case of Farkas’ lemma.

Case 2: There exists a splitting hyperplane, h ∈ Rm, such that ‖h‖∞ ≤ (m∆Ab)m and hTAu ≥ 1.

We use this hyperplane to bound xu. If we left-multiply Equation 2 by hT , we find

hTAuxu + hTAlxl = hT b.

Using the properties of hT and a little bit of algebra, we establish

‖xu‖1 = 1Txu ≤ hTAuxu = hT (b−Alxl) .

We have a bound on each of the terms on the right-hand side involving m and ∆Ab. Combining them
using Equation 1 twice incurs a factor of n and yields the following theorem:

Theorem 1: [14]

If a standard form IP with constraints Ax = b is feasible and bounded then it has a solution
x∗ ≥ 0 such that ‖x∗‖∞ ≤ nO(m∆Ab)2m+1.

5.2 Bounding v

With a bound on x, we know the DP in Section 4.3 terminates, but if we want to know its runtime,
we need to know how many table entries we need to fill. The number of table entries is determined
by the number of columns of A and by the space of intermediate v’s, the latter of which we need a
bound for.

We can think of an intermediate v as the value of the constraints of an intermediate solution, x.
Thus Ax = v for some x ∈ Nn such that ‖x‖∞ ≤ ‖x∗‖∞, where x∗ is some feasible solution. We
already have a bound on the entries of A, ‖A‖max, which we can compose with the bound on ‖x∗‖∞
from Theorem 1 (using Equation 1) to get a bound on Ax. Succinctly, we have

‖v‖∞ = ‖Ax‖∞ ≤ n ‖A‖max ‖x‖∞ ≤ n ‖A‖max (nO(m∆Ab)2m+1) = n2O(m∆Ab)2m+2

5.3 Papadimitriou’s DP

These bounds for ‖x‖∞ and ‖v‖∞ are certainly not pretty, but what’s particularly troubling is the
factor of n, since we often consider m to be fixed but allow n to vary. The following lemma shows that
n is in fact dominated by a function of ‖A‖max and m, which will allow us to simplify our bounds.

Lemma 2: [2]

In a standard form IP, we can safely assume n = O(‖A‖max)m.

Proof. Consider a single column vector. Each of its entries is in the range [−‖A‖max , ‖A‖max] and
thus can be one of only 2 ‖A‖max + 1 = O(‖A‖max) possible integers. Therefore A has at most
O(‖A‖max)m unique column vectors. A matrix with duplicate columns can be deduplicated by re-
moving repeats but keeping the copy with the highest corresponding objective value.

Using Lemma 2, we rewrite our bound on ‖x‖∞ to O(‖A‖max)mO(m∆Ab)2m+1 = O(m∆Ab)O(m)

and our bound on ‖v‖∞ to (O(‖A‖max)m)2O(m∆Ab)2m+2 = O(m∆Ab)O(m). With a bound on the
largest component of v (i.e., ‖v‖∞), there can be at most (2 ‖v‖∞ + 1)m unique values v can take

on at each of the n + 1 steps in the DP. Thus, there are O(n(2 ‖v‖∞ + 1)m) = (m∆Ab)O(m2) table
entries, each of which takes O(‖x∗‖∞) = O(m∆Ab)O(m) time to compute. We now have our first

runtime for solving IPs that is pseudo-polynomial with fixed m: O
(

(m∆Ab)
O(m2)

)
.

Optimization. We have given bounds to use for K in our DP, such that we will find a feasible
solution if any exists. To extend this algorithm to an optimization setting, Papadimitriou uses an LP
relaxation to bound how large the optimal integral cost can be. With this bound, he then adds the
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constraint cTx = c′ to the IP, where c′ is the current guess for the cost. He then binary searches over
values of c′ within the cost range, using the feasibility DP as a subroutine. The asymptotic bounds
remain the same, except we now depend upon c, which we express with ∆Abc = max {∆Ab, ‖c‖∞}.

Runtime 1: Papadimitriou [14]

The IP max
{
cTx : Ax = b,x ∈ Nn, A ∈ Zm×n, b ∈ Zm, c ∈ Zn

}
can be solved in time

O
(

(m∆Abc)
O(m2)

)
.

This runtime is better than nothing, but the exponent scales quite poorly with the number of con-
straints, m. In the next section, we will provide intuition for how Eisenbrand and Weismantel im-
proved this running time, not only dropping the O(m2) exponent to O(m), but also lowering ∆Abc to
‖A‖max, moving the dependence of ‖b‖∞ outside the exponent, and removing the dependence upon
c entirely. In the following sections, we let ∆ = ‖A‖max.

6 What’s Wrong With Papadimitriou?

What accounts for the O(m2) exponent? One of Papadimitriou’s key assumptions was that a good
bound on x would translate to a good bound on intermediate v’s. However, as we have seen, a bound
on ‖v‖∞ still leaves us with a space of size O(‖v‖∞)m to search. Can we shrink this space?

Let’s return to the generalized knapsack interpretation from Section 3. A solution, x, corresponds to
a multiset of vectors. Papadimitriou’s DP builds this multiset incrementally, one column at a time.
Bounding intermediate v’s amounts to bounding the intermediate constraint values of the partially
completed knapsack. As we’ll see, the order in which one builds the knapsack matters significantly.
Consider the following IP: [

∆ −∆
1 0

]
x =

[
0
∆

]
x =

[
∆
∆

]
is the smallest (and indeed only) solution to this system. However, the partial sums are

quite large! After including ∆ copies of a1, we arrive at the intermediate result[
∆ −∆
1 0

] [
∆
0

]
=

[
∆2

∆

]
Then we accumulate ∆ copies of a2, meeting the constraints:[

∆
∆2

]
+

[
∆ −∆
1 0

] [
0
∆

]
=

[
0
∆

]
Papadimitriou’s DP forces us to first choose how many copies of a1 to collect, then choose how many
copies of a2 to collect, after which, the algorithm is finished. On the other hand, if we are allowed to
“revisit” earlier columns, we can just alternate between them, keeping the partial sums small.

Above we saw that if we don’t enforce column-order, we might be able to find a sequence of partial
sums that doesn’t grow too large. But we are left with two unresolved questions:

1. We showed the existence of this ordering for a hand-crafted example, but how do we know such
an ordering always exists (Section 7)?

2. How do we construct a DP that can search these more general orderings efficiently (Section 8)?
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7 Home Is Where the Steinitz Strip Is

Enter the Steinitz Lemma, a statement at the intersection of combinatorial optimization and linear
algebra. This lemma guarantees that, provided our given vectors sum to 0, we can always order them
such that their partial sums never get too big.

Theorem 2: Steinitz Lemma [15, 5]

Let ‖·‖ be any norm, and let v1, . . . ,vn ∈ Rm such that ‖vi‖ ≤ B for all i.

Assume
n∑
i=1

vi = 0,

then there exists a permutation π ∈ Sn such that∥∥∥∥∥∥
k∑
j=1

vπ(j)

∥∥∥∥∥∥ ≤ mB, k = 1, . . . , n.

Figure 1: Depiction of the Steinitz lemma, as presented in [2]. The vectors on the left all have
bounded norms and sum to 0, so they can be re-ordered to fit within a ball of radius mB (here
m = 2).

Proof. Our proof follows Sevast’janov’s original proof [5] and Lau et al.’s modern presentation [13].

Motivation
Rather than directly considering a permutation of vectors, we instead reason about a collection of
nested sets of vectors. A permutation of vectors, π, is in correspondence with a collection of nested
sets, A1 ⊂ A2 ⊂ · · · ⊂ An, where Ak contains the first k vectors of the permutation.

Now let Ak be any subset of our given vectors such that |Ak| = k. By the triangle inequality, we
have the naive bound ∥∥∥∥∥ ∑

v∈Ak

v

∥∥∥∥∥ ≤ ∑
v∈Ak

‖v‖ ≤ kB,

which could be much larger than mB. Luckily, if k ≤ m, the desired inequality holds regardless of the
contents of the set. On the other hand, if k > m the vectors must be linearly dependent, a property
we can exploit to lower the bound on these sums:

Suppose we have a non-trivial convex combination of the vectors in Ak. That is, there exist some
coefficients λv ∈ [0, 1], not all 0, such that

∑
v∈Ak

λvv = 0. Then we could improve our bound to

∥∥∥∥∥ ∑
v∈Ak

v

∥∥∥∥∥ =

∥∥∥∥∥ ∑
v∈Ak

(1− λv)v

∥∥∥∥∥ ≤ ∑
v∈Ak

(1− λv) ‖v‖ ≤

(
k −

∑
v∈Ak

λv

)
B.
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If we can find λv that also satisfy
∑

v∈Ak
λv = k −m, we will have the desired inequality.

This suggests the following LP to find λv for a given set Ak:∑
v∈Ak

λvv = 0 (3)

∑
v∈Ak

λv = k −m (4)

0 ≤ λv ≤ 1 ∀v ∈ Ak (5)

Our goal is thus to produce a nested collection of sets where each set with more than m elements has
a corresponding feasible LP. This will allow us to bound every partial sum by mB. We proceed by
induction starting with k = n, i.e., the entire set of vectors, and ending with k = m + 1, since the
property is straightforward for the first m vectors, and they can be ordered arbitrarily.

Iterative LP Algorithm

Base Case k = n: We start the induction with our assumption on the sum of all the vectors, namely∑
v∈An

v = 0. Let λv =
n−m
n

. Constraint families 4 and 5 are clearly satisfied. Constraint family

3 holds by our assumption.

Inductive Step k + 1 =⇒ k:

Assume there exists a set of vectors, Ak+1 and a corresponding set of coefficients, λ
(k+1)
v , satisfying

the following LP: ∑
v∈Ak+1

λ(k+1)
v v = 0

∑
v∈Ak+1

λ(k+1)
v = k + 1−m

0 ≤ λ(k+1)
v ≤ 1 ∀v ∈ Ak+1

We wish to construct a set Ak ⊂ Ak+1 and corresponding coefficients λ
(k)
v that satisfy the LP when

k + 1 is replaced by k. We do so in two phases.

Scale λ
(k+1)
v . First, in the LP above, shrink k+ 1−m to k−m. By scaling λ

(k+1)
v to k−m

k+1−mλ
(k+1)
v ,

we obtain a feasible solution.

Basic Feasible Solution. Now comes the key insight of this inductive scheme. By reasoning about

tight constraints, we will argue at least one of the λ
(k+1)
v is 0 at a basic feasible solution. We can

thus throw out this variable and its corresponding vector to produce the set Ak.

Consider a basic feasible solution. There are m equalities in family 3, one for each coordinate, and
one equality in family 4. There are k + 1 variables. Thus at least (k + 1) − (m + 1) = k −m of the
inequalities must be tight. But at most k−m of these inequalities can be tight at 1, since they must
sum to k −m. If exactly k −m are tight at 1, the rest of the coefficients must be 0, so WLOG we
pick one of the corresponding vectors to remove. If fewer than k−m are tight at 1, then at least one
is tight at 0, so we again select a vector to remove WLOG. This yields the desired set Ak.

We have thus inductively constructed a collection of nested sets satisfying the LP and thus a permu-
tation satisfying the desired bound.

We now use the Steinitz Lemma to assert there is always a small sequence of partial sums for any
feasible point of an IP. Our proofs are adapted from Jansen and Rohwedder’s re-presentation of
Eisenbrand and Weismantel’s results [8].

We first consider the special case when b = 0, ignoring the trivial solution x = 0 since we will
ultimately generalize this idea.
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Lemma 3

Let max
{
cTx : Ax = 0,x ∈ Nn, A ∈ Zm×n, c ∈ Zn

}
be bounded and feasible. For any feasible

solution, x, there exists a sequence of partial sums, Ax1, . . . , Ax‖x‖1−1, Ax, such that every
sum, Axi lies in the set {y : ‖y‖∞ ≤ m∆}. This region contains at most (2m∆ + 1)m =
O(m∆)m integral points.

Proof. Let x be any feasible point of the IP. Since Ax = 0 we can use the Steinitz Lemma to produce
a sequence of column vectors, v1, . . . ,v‖x‖1 , where column i appears xi times.

This sequence has small partial sums, in particular since ‖vi‖∞ ≤ ∆ by the definition of ∆,

∥∥∥∥∥∥
k∑
j=1

vj

∥∥∥∥∥∥
∞

≤ m∆, k = 1, . . . , ‖x‖1 .

Every partial sum is thus contained inside a ball with (2m∆ + 1)m integral points, since there are
2m∆ + 1 integral points in the interval [−m∆,m∆].

We now discuss how to generalize this result to arbitrary b.

7.1 Arbitrary b

With the normal Steinitz Lemma, we can think of the partial sums as staying close to the origin. We
will now think of them as marching towards b. If there are n vectors, we can think of each one of

them as getting us to roughly
b

n
. We generalize the Steinitz Lemma to formalize this intuition.

Theorem 3: Generalized Steinitz Lemma [2, 5]

Let ‖·‖ be any norm, and let v1, . . . ,vn ∈ Rm such that ‖vi‖ ≤ B for all i.

Assume
n∑
i=1

vi = b,

then there exists a permutation π ∈ Sn such that∥∥∥∥∥∥
k∑
j=1

vπ(j) −
(
k

n

)
b

∥∥∥∥∥∥ ≤ m
(
B +

‖b‖
n

)
, k = 1, . . . , n.

Proof. Translate each of the n vectors vi to vi −
b

n
. This translates the sum to

∑
i

(
vi −

b

n

)
= 0.

By the triangle inequality,

∥∥∥∥vi − b

n

∥∥∥∥ ≤ (B +
‖b‖
n

)
. Thus by the Steinitz Lemma,∥∥∥∥∥∥

k∑
j=1

(
vπ(j) −

b

n

)∥∥∥∥∥∥ ≤ m
(
B +

‖b‖
n

)
, k = 1, . . . , n.

The result follows.

We take this opportunity to name the path produced by the Generalized Steinitz Lemma:

Definition 2: Steinitz-Ordered Path

Let A ∈ Rm×n and b ∈ Rm. A Steinitz-ordered path of a solution x ∈ Nn to the equation
Ax = b is a path in Rm connecting the partial sums given by the Generalized Steinitz Lemma.
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We are now ready to generalize Lemma 3 to arbitrary b.

Theorem 4

Let max
{
cTx : Ax = b,x ∈ Nn, A ∈ Zm×n, b ∈ Zm, c ∈ Zn

}
be bounded and feasible. For

any feasible solution, x, there exists a Steinitz-ordered path contained in the set {y : ∃ γ ∈
[0, 1], ‖y − γb‖∞ ≤ 2m∆}. This region contains at most (4m∆ + 2)m(‖b‖∞ + 1) =
O(m∆)m(‖b‖∞ + 1) integral points.

Proof. Let ai be a column of A. By properties of norms,∥∥∥ai − b
‖x‖1

∥∥∥
∞
≤ ‖ai‖∞ +

‖b‖∞
‖x‖1

≤ ∆ + ‖A‖max (Equation 1)

= 2∆.

Thus, by the Generalized Steinitz Lemma, for any feasible x we have a Steinitz-ordered path, {vπ(i)},
such that ∥∥∥∥∥

k∑
i=1

vπ(i) − (k/‖x‖1) b

∥∥∥∥∥
∞

≤ 2m∆, k ∈ {1, . . . , ‖x‖1} (6)

The vertices of the path are thus within 2m∆ of the set
{(

1
‖x‖1

)
b,
(

2
‖x‖1

)
b, . . . , b

}
. If we use this

region directly to bound our search space, that bound will depend on x. We instead increase the
region slightly to the set of vectors v such that, for some γ ∈ [0, 1],

‖v − γb‖∞ ≤ 2m∆.

This removes x from the description. Now consider the discrete points {b · i/‖b‖∞ : i = 0, . . . ‖b‖∞}.
Notice, for any j, ∥∥∥∥b · j + 1

‖b‖∞
− b · j

‖b‖∞

∥∥∥∥
∞

=

∥∥∥∥ b

‖b‖∞

∥∥∥∥
∞

= 1,

so the points are close. In particular, this implies that for any γb with γ ∈ [0, 1], there is a discrete
point at most 1/2 a unit away. Thus, for some j,

∥∥∥∥v − b · j

‖b‖∞

∥∥∥∥
∞
≤ ‖v − γb‖∞ +

∥∥∥∥γb− b · j

‖b‖∞

∥∥∥∥
∞
≤ 2m∆ + 1

2 .

This means we can search ‖b‖∞ + 1 balls of size 4m∆ + 2 in the infinity norm. The size of this set
is (4m∆ + 2)m(‖b‖∞ + 1).

Figure 2: (left) Summary of proof above (right) The yellow bounding region which is the goal of
the theorem and the dotted-black overapproximation used to prove it.
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We will study the region introduced in Theorem 4 in the following sections, so we give it a name:

Definition 3: Steinitz Strip

The Steinitz strip for the constraint Ax = b is the set {y : ∃ γ ∈ [0, 1], ‖y − γb‖∞ ≤ 2m∆}
(i.e., the region in Figure 2). It contains a Steinitz-ordered path for every feasible x.

Our first application of the Steinitz strip is to bound the size of an optimal solution to an IP.

Corollary 1: [8]

Let max
{
cTx : Ax = b,x ∈ Nn, A ∈ Zm×n, b ∈ Zm, c ∈ Zn

}
be bounded and feasible. There

exists an optimal solution x∗ such that ‖x∗‖1 ≤ O(m∆)m(‖b‖∞ + 1).

Proof. Consider an optimal solution x∗. By Theorem 4, it has a Steinitz-ordered path inside the
Steinitz strip, which has at most O(m∆)m(‖b‖∞ + 1) distinct points. The length of this path is
‖x∗‖1, so if we can ensure the path visits each point in the strip at most once, we will have proved
the corollary. In general we cannot guarantee this, but we can reduce any solution to one that visits
unique points.

If x∗ visits a point more than once there is a cycle in the path, i.e., there is some subpath of the
Steinitz-ordered path {vπ(j)} such that

∑k2
j=k1

vπ(j) = 0. We claim we can remove this cycle while
maintaining optimality. If the cycle had positive cost, then we could traverse the cycle again, violating
the optimality of x∗. Similarly, if the cycle had negative cost, then we could remove the cycle, again
violating optimality. Thus the cycle must have 0 cost, and so removing it produces another optimal
solution. After removing all 0-cost cycles, we obtain a new optimal solution ‖y∗‖ that traverses every
point at most once. Thus ‖y∗‖ ≤ O(m∆)m(‖b‖∞ + 1).

8 Eisenbrand’s BF

In the previous section we showed there is always a Steinitz-ordered path from 0 to b within the
Steinitz strip. However, recall Papadimitriou’s DP forced us to pick clumps of vectors at a time, so
despite its large search space, it might not even discover this path!

Recall a Steinitz-ordered path is a path in Rm starting at 0. In fact, since our constraints are integral,
it’s a path in Zm starting at 0. What is the structure containing all such paths? It has vertices,
which are points reachable from 0 via integer-linear combinations of column vectors, ai, and that lie
within the Steinitz strip. These vertices are connected by edges, where for each vertex u, we have
an edge to another vertex v iff u + ai = v for some i (that is, iff v is reachable from u using only a
single column vector). These properties describe a graph structure embedded in Rm!

Consider the example in Section 6. If we run breadth-first search (BFS) over its implicit graph (dotted
edges denote the frontier), we see how the space of feasible solutions begins to unfold, and how we
find the Steinitz-ordered path (denoted by the bolded vectors).
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A BFS will give us a feasible solution, if any exists, but in order to find an optimal solution we need
to consider the weights on these edges. Each edge corresponds to adding a column vector ai to our
solution. With an objective, cTx, adding this column vector adds ci to the objective value. Thus the
weight of an edge between two vertices u and v is ci when v + ai = u.

We can thus run the Bellman-Ford algorithm to compute the longest path through this graph in order
to find an optimal solution!

What is the size of our graph? As stated earlier, the number of integral points, |V |, in the Steinitz
strip is at most O(m∆)m(‖b‖∞ + 1), and the number of edges, |E|, is at most n|V |, because each
vertex has at most n directions (column vectors) to choose from. Substituting into the Bellman-Ford

runtime gives O(|V | · |E|) = O(n|V |2) = O(n((m∆)m(‖b‖∞ + 1))2) = O(n(m∆)2m ‖b‖2∞).

Recall in Lemma 2 we showed n = O(∆)m, allowing us to rewrite to our final bound.

Runtime 2: Eisenbrand and Weismantel [2]

The IP max
{
cTx : Ax = b,x ∈ Nn, A ∈ Zm×n, b ∈ Zm, c ∈ Zn

}
can be solved in time

O((m∆)O(m) ‖b‖2∞).

Compared to Papadimitriou’s DP runtime of O
(

(m∆Ab)
O(m2)

)
, we have dropped the exponent from

quadratic to linear and we have factored our dependence on ‖b‖∞ out of the exponential term.

By reasoning locally about the graph induced by column vectors ai, we were able to tap into an
existing graph algorithm, but if we take a more global view on the search space (i.e., the Steinitz
strip), a little guesswork allows us to formulate a divide-and-conquer procedure, which we walk
through in the next section.

9 Fuzzy Divide and Conquer for Faster Search

Though Eisenbrand and Weismantel’s algorithm runs much faster than Papadimitriou’s, we can still
do better. They considered a much more general search space than Papadimitriou, but they were
able to bound the search space more effectively, because its structure “unlocked” the Steinitz lemma.
However, the Steinitz strip has a nice structure that Eisenbrand and Weismantel don’t take full
advantage of. It’s a narrow strip around the line segment from 0 to b, so we expect that half the
path should land somewhere near the midpoint b/2.

In an ideal world, we’d know the length of the path, ‖x‖1, and its halfway point, b′. Using these,

we could then search for paths of length
‖x‖1
2 from 0 to b′ and from b′ to b. (Note if we translate

the second path to the origin, it becomes a path from 0 to b− b′.) This would give us two half-sized
problems! Alas, our world is far from ideal, but it is close enough that we still get a speedup.

Determining ‖x‖1. By Corollary 1, there is an optimum x∗ such that ‖x∗‖1 ≤ O(m∆)m(‖b‖∞+1).
By adding a 0 column to the constraint matrix and a corresponding 0 entry to c, we can pad this
solution so that the inequality is tight. We thus know the exact size of the solution we’re looking for!

Guessing the Halfway Point. Now that we know the exact size of the solution we’re searching
for, we can use Equation 6 (a consequence of the Generalized Steinitz Lemma) with k = ‖x‖1/2 to
obtain a region containing the halfway point of the path:

∥∥∥∥∥∥
‖x‖1/2∑
j=1

v(j) − b

2

∥∥∥∥∥∥
∞

≤ 2m∆.

Thus if we guess every value in the ball with radius 2m∆ around
b

2
, one of our guesses will be the

halfway point.
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Guessing the Quarterway Point. Suppose we have a guess, b′, for the halfway point. How do we
guess a quarterway point? By the same logic as the halfway point, we have∥∥∥∥∥∥

‖x‖1/4∑
j=1

v(j) − b′

2

∥∥∥∥∥∥
∞

≤ 2m∆.

Unfortunately, since this bound is in terms of b′ and not b, it’s difficult to determine how many

entries we’ll need for the entire DP. We thus relate the quarterway point back to
b

4
via

b′

2
:∥∥∥∥b′′ − b

4

∥∥∥∥
∞
≤
∥∥∥∥b′′ − b′

2

∥∥∥∥
∞

+

∥∥∥∥b′2 − b

4

∥∥∥∥
∞

(triangle inequality)

≤ 2m∆ +
1

2

∥∥∥∥b′ − b

2

∥∥∥∥
∞

≤ 2m∆ +
1

2
(2m∆) (halfway point bound)

= 3m∆.

Guessing the 2−i-way Point. In general, we have the recurrence∥∥∥∥b(i+1) − b

2i+1

∥∥∥∥
∞
≤
∥∥∥∥b(i+1) − b(i)

2

∥∥∥∥
∞

+

∥∥∥∥b(i)2
− b

2i+1

∥∥∥∥
∞
≤ 2m∆ +

1

2

∥∥∥∥b(i) − b

2i

∥∥∥∥
∞

and ∥∥∥∥b′ − b

2

∥∥∥∥
∞
≤ 2m∆.

We approximate these bounds from above by using the fixpoint: B = 2m∆ + 1
2B. Thus B = 4m∆

and we have

∥∥∥∥b(i) − b

2i

∥∥∥∥
∞
≤ 4m∆.

This is only a factor of two worse than for b′!

Defining the Recurrence.

Let ‖x‖1 = 2K where K = O(m log(m∆) + log(‖b‖∞)). We are now ready to formally define the
recurrence:

T (0,v) =

{
cj , The jth column of A is v.

−∞, otherwise

T (i,v) = max

{
T (i− 1,v′) + T (i− 1,v − v′) :

∥∥∥∥v′ − b

2K−i+1

∥∥∥∥
∞
≤ 4m∆

}
We compute T (K, b) to solve the original IP. There are K+1 levels of tables, each indexed by i. Each
level will store the entries for every v′ in its corresponding ball. There are (8m∆ + 1)m = O(m∆)m

entries. Similarly, the max must be computed over O(m∆)m terms, so computing each entry in the
table costs O(m∆)m. This yields an overall runtime of O(m∆)2m(K + 1) = O(m∆)2m(m log(m∆) +
log(‖b‖∞)) = O(m∆)2m(log(∆) + log(‖b‖∞) since the m terms are absorbed by the first part, which
is exponential in m.
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Runtime 3: Jansen and Rohwedder (Näıve) [8]

The IP max
{
cTx : Ax = b,x ∈ Nn, A ∈ Zm×n, b ∈ Zm, c ∈ Zn

}
can be solved in time

O(m∆)2m(log ∆ + log ‖b‖∞).

Figure 3: Visual summary of the final level of the DP. With all steps i ≤ K computed, the
problem Ax = b remains, and we first guess a b′ near b/2. This b′ defines the subproblems Ax = b′

and Ax = b − b′. If they have solutions x∗1,x
∗
2, we are guaranteed they have ‖x∗1‖1 , ‖x∗2‖1 = 2K−1,

meaning they will be cached in the DP table at level K − 1. We can then string the subproblem
solutions together to arrive at a solution to Ax = b. Beyond feasibility, to optimize for cost, we
simply take the max-cost solution over all choices of b′ near b/2.

Compared to Eisenbrand’s runtime of O((m∆)m ‖b‖2∞), we have drastically improved our depen-
dence upon ‖b‖∞, going from quadratic to logarithmic, while incurring a new log(∆) multiplicative
overhead. By improving the speed of the max computation and recognizing that a slightly weaker
statement than Steinitz is necessary (we only need to reason about the halfway point, not the entire
path), Jansen and Rohwedder have reduced this runtime even further.

Runtime 4: Jansen and Rohwedder [9]

The IP max
{
cTx : Ax = b,x ∈ Nn, A ∈ Zm×n, b ∈ Zm, c ∈ Zn

}
can be solved in time

O(
√
m∆)2m log ‖b‖∞.

Exhausted by the breadth of techniques we’ve covered, we are nevertheless compelled by our eternal
quest for optimality. Ready to collapse, the words still find their way past our lips: Can we do better?

10 Can We Do Better?

10.1 Probably Not.

In parallel with algorithmic advancements for IPs, Fomin et al. [3] and Knop et al. [12] proved
conditional lower bounds on IP algorithms with similar structures to the ones we’ve discussed. In
particular, they showed that fast IP algorithms that running in pseudo-polynomial time for a fixed
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number of constraints would disprove the Exponential Time Hypothesis (ETH), which conjectures
that 3-SAT runs in exponential time [1]. More formally, ETH hypothesizes that a 3-SAT instance
with n variables and m clauses does not run in time 2o(n+m). To provide some intuition for these
results, we sketch their proofs.

Reducing 3-SAT to IP.
At the heart of Fomin et al.’s result is an encoding of a 3-SAT formula as an IP. Suppose we have a
3-SAT instance with n variables and m clauses.

Variables. For each 3-SAT variable, xi, we define two IP variables, xi and xi. We wish to have
exactly one of these variables be 1 and the other 0, denoting true and false, respectively, so we add
the constraint xi + xi = 1. Since the IP is in standard form, the variables are already integral and
non-negative, so the constraint suffices. This requires 2n variables and n constraints.

Clauses. For each clause, Ci = x ∨ y ∨ z, we want to constrain the sum of the component variables
such that 1 ≤ x+ y+ z ≤ 3. This ensures at least one of the variables is true. To do so, we introduce
two slack variables per clause, Yi and Zi, with corresponding constraints, x + y + z + Yi = 3 and
Yi+Zi = 2. The second equation ensures Yi ≤ 2, so together these constraints encode 1 ≤ x+y+z ≤ 3.
This requires 2m additional variables and 2m additional constraints.

Our IP instance totals 2n + 2m variables and n + 2m constraints. Notice also that ‖A‖max = 1
and ‖b‖∞ = 3, which are constant in the size of the 3-SAT instance. Thus if we can solve an
IP with k constraints and small values in 2o(k)|I|O(1) time, where |I| is the total bitsize of the
input, we can solve 3-SAT in 2o(n+2m) = 2o(n+m) time, contradicting ETH. This bound is good,
but not great. Both Eisenbrand and Weismantel’s and Jansen and Rohwedder’s algorithms run in
O(kk)|I|O(1) = 2O(k log k)|I|O(1) time on these encodings.

Shrinking the IP.
Knop et al. strengthened Fomin et al.’s claim. They showed that an IP algorithm running in 2o(k log k)

time when A is a matrix of 0’s and 1’s, b’s entries are non-negative, and the number of columns and
the size of b are both O(k log k) is sufficient to disprove ETH. To improve the bound, Knop et al.
take Fomin et al.’s original 3-SAT encoding and shrink it to one with just O((n + m)/ log(n + m))
constraints. Thanks to this reduction, an IP algorithm with a runtime of 2o(k log k)|I|O(1) would
suffice. This means any algorithm that runs significantly faster Eisenbrand and Weismantel’s would
violate ETH, which would be a very surprising result.

11 Conclusion

Having seen three different algorithms for solving IPs, which follow quite logically from their prede-
cessors, we take a step back to ponder why these new algorithms are so much better. By definition,
IPs sit at the intersection of combinatorial optimization and linear algebra, since they require discrete
solutions to otherwise-linear problems. At the core of Papadimitriou’s algorithm lies a straightforward
integral variant of Farkas’ lemma. This statement fits largely on the linear algebra side, mostly blind
to the combinatorial structure of the problem. On the other hand, Eisenbrand and Weismantel’s and
Jansen and Rohwedder’s algorithms revolve around the Steinitz Lemma, whose proof is a discrete
optimization algorithm on nested linear programs. By leveraging the essence of IPs, these latter
algorithms achieve runtimes that are probably optimal. Though the Steinitz lemma is the engine
behind the algorithms in this paper, the larger takeaway is that the synthesis of ideas from linear
algebra and combinatorics may be the key to efficient IP algorithms.
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