6.838: Shape Analysis, 2021
Instructor: Justin Solomon
TAs: David Palmer and Paul Zhang

Towards an Algorithm for Reeb Graph Construction on
Constructive Solid Geometry

Logan Weber!

IMIT Department of Electrical Engineering and Computer Science

union() {

translate([-5, -5, @])
cube([10, 10, 10]);

translate([3, -5, 9])
cube([10, 16, 10]);

translate([-13, -5, 6])
cube([10, 16, 10]);

translate([-5, -5, 15])
cube([10, 18, 18]);

Figure 1: Rather than converting constructive solid geometry (CSG) into a triangle mesh to generate a Reeb graph, our algorithm computes

Reeb graphs directly from a subset of CSG.

Abstract

Ever since Shinagawa, Kunii, and Kergosien gave the first algorithm for computing Reeb graphs [SKK91], they have become an
important technique in computational topology. Their work initially drew interest from the computer graphics community and
has led to new algorithms for constructing Reeb graphs, new theory for studying them, and new applications in which to utilize
them. In all published work involving the construction of Reeb graphs on CAD models, the models are first converted into
triangulated surfaces, then standard construction algorithms are applied to the surface. However, constructing Reeb graphs
directly from CAD representations like constructive solid geometry (CSG) could give new insights into the properties of Reeb
graphs and give rise to a new class of algorithms for generating them. As a first step in realizing this goal, we present an
algorithm for constructing Reeb graphs of height functions directly from a subset of CSG.

1. Introduction

Reeb graphs, originally proposed by Georges Reeb in
1946 [Ree46], capture the level set topology of a real-valued
function on a manifold. They were originally a tool of Morse
theory, which aims to study the topology of a manifold by
studying differentiable functions on it.

Reeb graphs didn’t see much light in the realm of computer
science until the work of Shinagawa, Kunii, and Kergosien in
1991, wherein they presented the first algorithm for automati-

cally constructing Reeb graphs, with applications in medical imag-
ing [SKK91]. Reeb graphs garnered further interest when Hi-
laga et al. demonstrated their efficacy in computing shape simi-
larity [HSKKO1]. Ever since, Reeb graphs have found applications
throughout shape analysis [BGSFO08], and more recently, topologi-
cal data analysis [Mun17].

Thereafter, in the flurry of activity around Reeb graphs, Be-
spalov, Regli, and Shokoufandeh applied Reeb graphs to the shape
retrieval task for CAD models [BRS03]. In this work, they applied

L. Weber / Reeb Graphs on CSG

the work of Hilaga et al. with minimal modification and showed the
promise of Reeb graphs in the CAD domain as well.

Despite having access to domain-specific representations (e.g.,
boundary representations and constructive solid geometry (CSG)),
all prior work in the CAD realm constructs Reeb graphs from tri-
angle meshes by first converting from a CAD representation. The
reason for doing so is economical, as a triangle mesh provides a
common format to compile the various CAD formats to. However,
computing directly from CSG may be of interest for several rea-
sons: (1) It provides a different view of Reeb graphs that may be of
theoretical interest. In particular, it may be valuable to understand
how topology changes under the set-theoretic operations present in
CSG. (2) It gives rise to a new class of algorithms for Reeb graph
construction with different runtime complexities.

In this paper, we recapitulate a Reeb graph construction algo-
rithm based on ascending paths on triangulated surfaces, then we
propose a new algorithm for constructing Reeb graphs directly
from a subset of CSG expressions (namely, the restriction to cube
primitives and the union operation).

2. Background

If f: M — R is a real-valued function on a compact manifold M,
then we start to define the Reeb graph of (M, f) by first defining
the equivalence relation x ~ y, which holds when f(x) = f(y) and x
and y belong to the same connected component at £~ ' (f(x)). Then
the Reeb graph is the quotient space M/ ~.

As Morse theory is concerned with differentiable functions, it is
often desired that f is differentiable, and additionally, that it has no
degenerate critical points. A function f that satisfies these proper-
ties is called a Morse function.

Despite the desire to work with Morse functions, functions de-
fined on arbitrary surfaces are likely to have degenerate critical
points. However, even though Reeb graphs are a tool of Morse the-
ory, we don’t need Morse functions in order to compute the evo-
lution of the level set topology. This idea is explored in [BFS00],
where Biasotti, Falcidieno, and Spagnuolo contribute the insight
that degenerate critical points form critical areas, and all points
within a simply connected critical area are Reeb-equivalent, mean-
ing they can be collapsed into a single node.

A popular choice of function for Reeb graphs on surfaces is the
height function, which is an extrinsic function (i.e., dependent
upon the particular embedding of the surface within a manifold).
The height function & : M — R of a manifold M C R3 is defined as
h(p) = h((x,y,z)) = y. For the sake of simplicity, we restrict our at-
tention to the height function in this paper, though there is work that
uses functions defined in terms of intrinsic properties (e.g., average
geodesic distance to all other points on the mesh), which give Reeb
graphs that are invariant to rigid motion and scaling [HSKKO1].
The Reeb graph of the height function on a torus is shown in Fig-
ure 2.

3. Related Work

Reeb graphs are of a theoretical nature and date back to 1946 when
Georges Reeb proposed them as a tool in Morse theory [Ree46],

Figure 2: Example of a 2D surface with boundary (left) and the
Reeb graph of the height function f on this surface (right). Image
source: [HR20]

which aims to study the topology of manifolds by defining differ-
entiable functions on them and examining their behavior.

It should be noted that contour trees are sometimes mentioned
in the literature, but they are a less general object. In essence, con-
tour trees are Reeb graphs on simply connected domains, and hence
have no cycles. When they show up in the literature, they are often
given less theoretical motivation and are geared towards applica-
tions.

Shape Reconstruction. The first algorithm for Reeb graph con-
struction was by Shinagawa and Kunii in 1991 [SKK91]. Their
application was to medical imaging, and the setting differs sig-
nificantly from later applications. Their problem setup is that they
wish to construct the Reeb graph of a height function defined on a
shape, given only cross-sectional contours (approximated as poly-
gons) of the shape. Once they have the Reeb graph, their goal is 3D
shape reconstruction, and their driving example is reconstruction of
a human cochlea. The algorithm runs in (’)(nz) time, where n is the
number of total points in the contours.

Shape Similarity. In a seminal 2001 paper, Hilaga et al. proposed
shape similarity as a viable application for Reeb graphs [HSKKO1].
The input is different from Shinagawa and Kunii’s, since in the
work of Hilaga et al., they assume the input is a triangle mesh.
Their justification for triangle meshes is that they can be converted
to and from other representations. In particular, they developed a
variation called a multiresolutional Reeb graph (MRG) which
captures topological structure at multiple levels of detail. They also
proposed an intrinsic alternative to the extrinsic height function. In
particular, at each point, they define f: S — R as

p(v) —minpesu(p)
max,es t(p)

where u(v) = fpesg(v,p)dS is the sum of geodesic distances from
v to all other points p. That is, they use the sum of geodesic dis-
tances so the Reeb graph is invariant to rigid motion, and they nor-
malize so it’s invariant to scale. They approximate the geodesic
distance by running Dijkstra’s algorithm on a mesh with shortcut
edges (to improve the approximation). The similarity between two

fv) =

L. Weber / Reeb Graphs on CSG

Figure 3: Example of a height function with a single isolated max-
imum (a), a height function with a critical point of multiplicity 3
(b), and a height function with a connected component of maxima
(c). Image source: [BFS00]

shapes is then computed using a custom weighted graph matching
algorithm. They are able to leverage the multiresolutional structure
of the MRG to iteratively build solutions, starting from the coarsest
resolution (a single node) where the solution is trivial, then simul-
taneously refining the resolution and the mapping. The runtime of
their construction algorithm is O(n+ ¢), where n is the number of
vertices of the mesh and c is the number of vertices inserted while
generating contours at each resolution.

Since Hilaga et al.’s paper, there has been a proliferation of
work on parallel construction algorithms [PCMO03, HR20], online
construction algorithms [PSBMO7], randomized construction algo-
rithms [HWW10], miscellaneous construction algorithms [DNO09,
DNI13], the study of distances between Reeb graphs [BB13,
BGW14,BMW15,FL16,SMP16,BFL16,BLM20], and the applica-
tion of Reeb graphs to topological data analysis [Mun17, TFL*18].

Extended Reeb Graphs. Morse theory cares about Morse func-
tions (functions with no degenerate critical points), but there’s a
problem with using Reeb graphs on discrete surfaces, because dis-
crete surfaces might have many degenerate critical points. Early
techniques proposed “hacks” to fix this problem. For example,
when considering the Reeb graph of a height function, you can of-
ten rotate the shape slightly to remove degenerate critical points.
The authors of [BFS00] note that this kind of fix may patch up
the theoretical problem, but it introduces nodes in the Reeb graph
that do not correspond to shape features. To fix this problem, they
propose extended Reeb graphs (ERGs), which handle degenerate
critical points by generalizing to critical areas, and they propose an
algorithm for constructing ERGs. Figure 3(c) shows an example of
a critical area.

Computer-Aided Design. Reeb graphs were first applied to CAD
in 2003 by Bespalov, Regli, and Shokoufandeh [BRSO03]. In this
work, they directly followed the work of Hilaga et al., and their goal
was simply to show the efficacy of Reeb graphs for shape retrieval
on solid models and to present a dataset of solid models to test
against.

In 2006, Biasotti et al. extended this technique for model re-
trieval and sub-part correspondence [BMSF06]. Their contribution
is a method for partial shape matching that is able to recognize sim-
ilar sub-parts of objects by making use of Spherical Harmonics.
This work differs in that the method emphasizes a sub-part similar-
ity measure in addition to global similarity measures given by prior
work.

Present Work. All work the author could find that applied Reeb
graphs to CAD assumes the input is a polygonal mesh, rather than

a solid model format (e.g., a boundary representation, constructive
solid geometry, or a mixture thereof). Thus, the present work dif-
ferentiates itself from prior work in that we compute Reeb graphs
of height functions directly from constructive solid geometry ex-
pressions.

Interestingly, this algorithm can be thought of as most similar
to the orignal work of Shunigawa, Kunii, and Kergosien [SKK91],
since in their work, they are constructing the Reeb graph directly
from cross-sectional contours, rather than from a triangle mesh. An
important difference is that, by having access to the CSG expres-
sion, we can be more precise in how we choose the contours to
generate.

Further Reading. The author defers further discussion to an ex-
tensive survey paper by Biasotti et al. on Reeb graphs and their
applications to shape analysis [BGSFOS].

4. Technical Approach

In this section, we present an algorithm for constructing Reeb
graphs from a subset of constructive solid geometry, wherein we
allow only cubes as primitives and union as an operation.

We derived our implementation by analogy to the algorithm de-
scribed in [HR20] for Reeb graph construction on triangle meshes,
which we henceforth term the “ascending paths” method. Thus, to
build intuition for the former, we describe the ascending paths al-
gorithm in Section 4.1, then we present the algorithm for CSG in
Section 4.2. Then, in Section 5, we compare the Reeb graphs gen-
erated by both techniques.

4.1. Reeb Graph Construction on Triangle Meshes

Figure 4: Summary of the ascending paths method. In step (1), the
critical points of the input surface are calculated. Then, in step (2),
the critical sets are computed. In step (3), ascending paths are com-
puted from each saddle point and minimum and . When an ascend-
ing path contacts a critical set, the source of the ascending path
is connected to the critical point corresponding to the critical set,
giving the resulting Reeb graph (4). Image source: [HR20]

The ascending paths method involves three core computational
components: critical points, critical sets, and ascending paths. We
describe each separately before presenting the entire algorithm.

L. Weber / Reeb Graphs on CSG

Critical Points. Formally, a point p € S is a critical point of f if
the differential dfp is zero. On triangle meshes, we can check if
a point p is critical by analyzing the sign of f(v) — f(p) for each
point v in the 1-ring of p. The cases are shown in Figure 5.

Figure 5: Types of sign configurations in the 1-ring of a vertex:
(left) a minimum, (left middle) a maximum, (right middle) a regular
vertex, and (right) a saddle point. Image source: [HR20]

Critical Sets. A critical set Cp is defined with respect to a critical
point p and is an approximation of the level set of f(p). On a tri-
angle mesh, the true level set is given by a polyline curve over the
mesh faces, however, exactly representing this curve is not neces-
sary, as we can form an overapproximation of it as a set of vertices.
Namely, for each edge the curve would travel through, we include
the endpoint vertices, one of which will certainly have a higher f
value, and one of which will certainly have a lower f value (see
Figure 7). To ease the computation of ascending paths in the algo-
rithm, we keep track of each stable component separately, rather
than storing the critical set in aggregate (see Figure 6). We will see
why later.

Figure 6: An illustration of critical set components C, },,CIZ,. The ag-
gregate critical set Cp is given by UiC;, =C, 11’ U CIZ,.

Critical sets for minima and maxima consist of only the critical
point themselves, and are thus trivial to compute. To compute crit-
ical sets for saddles, we start with the critical point p, then within
the 1-ring of p, we find all pairs of adjacent points u, v for which
sign(f(u) — f(p)) # sign(f(v) — f(p)) (i.e., one is above p and
one is below p). These pairs form the starts of the paths that the
level set curve passes between.

We now restrict our attention to a single pair. For each pair, we
choose the point v that is below p as the start of the path. At each
step, we add v to the critical set and any neighbors that are adjacent
to v and above p. Then for the next step, we choose the neighbor of
v that is below p and that is adjacent to a point that is above p.

We perform this walk for each pair described earlier, and each

walk gives a component C;, of Cp. After all walks, we have com-
puted the aggregate critical set Cp.

Figure 7: Close-up of a critical set (points circled orange) deter-
mined by the polyline curve (green), which represents the level set
of the height function at a particular altitude. Image source: [HR20]

Ascending Paths. Ascending paths are paths starting at critical
points that travel upwards with respect to the height function un-
til they meet a critical set (they are guaranteed to meet a critical set
eventually).

To compute ascending paths, we initialize the start vertex to a
critical point, then we greedily choose the neighbor in our 1-ring
with the highest value as the next node in our path. At each step,
we check if the current node is contained in any point’s critical set,
and if it is, finish.

The Algorithm. A summary of the algorithm is given in Figure 4.
To begin, we first compute the critical points of the mesh. Each
critical point becomes a node in the resulting Reeb graph. For each
critical point, we compute its critical set. We then mark each com-
ponent of each critical set as unvisited.

Now, we compute ascending paths. Note that we cannot have
ascending paths for maxima (there’s no way to go up!), so we
need only consider minima and saddle points. For a minimum,
we compute a single ascending path and connect the minimum to
whichever critical set it reaches. For a saddle, we send two ascend-
ing paths from p, and for each unvisited Ci touched by a path, an
edge is added from p to v and C,, is marked as visited. If we had not
stored each component of critical sets separately, we would need to
reason about which type of saddle (split or merge) we are sending
paths from, in order to know how many to send. Storing and using
the critical sets like so has the additional benefit that we can handle
saddles of higher multiplicity with no further modifications.

4.2. Reeb Graph Construction on CSG

We now present an algorithm for constructing Reeb graphs from
CSG expressions consisting of unions of cubes. The algorithm can
be summarized as follows:

1. Identify the critical points of all primitives in the expression.
2. Iterate over critical points in order of height.
a. Compute collisions of primitives with plane at y —€ and y+€.

L. Weber / Reeb Graphs on CSG

b. Determine connectivity change from y — € to y + €.
c. Add nodes/edges depending on type of connectivity change.

The full algorithm is given in Algorithm 1 and an example execu-
tion is given in Figure 8. In the rest of this section, we provide the
concepts necessary to understand the algorithm, and as seen fit, we
expand on particular steps of the algorithm.

Critical Areas. The algorithm first computes the critical areas of
all primitives, which is as simple as gathering all primitives and
collecting their critical areas. We can precompute the critical areas
for each primitive, and since we only consider cubes, we know each
primitive will only have two critical areas: the top and bottom faces.
Once we have the critical areas, we sort them by their height, throw
away duplicates, and begin sweeping over them. See Figure 8(b).

Critical Difference. A key difference from the ascending paths
method is that, with our algorithm, not all of the primitive critical
areas correspond to the critical areas of the overall shape. That is,
the primitive critical areas provide an overapproximation of the true
set of critical areas. In Figure 8, for example, we see steps (2),
(3), (6), and (7) have no corresponding node in the resulting Reeb
graph. A corollary of this fact is that we do not know a priori what
nodes (or how many) we will have in our final Reeb graph, so we
need to create nodes dynamically.

Collisions With Planes =~ Critical Sets. At the critical point with
y-coordinate y;, we compute the collisions of all primitives with
the plane y = y; + € above the critical point and y = y; — € below
the critical point. These collisions give rise to 2D shapes on the
plane, so we can use standard 2D collision detection algorithms to
determine which shapes belong to the same level set component.

Representing Connected Components of Collisions. To repre-
sent the components, we use a union-find (UF) data structure, and
while iterating over all pairs of shapes, if two shapes are determined
to intersect, we union them together. These union-find structures
are analogous to the critical sets of the ascending paths method,
but a subtle difference is that we don’t aim to store the level set
topology of the critical point itself at y = y;, but rather the level set
topology above and below it. While critical sets may store contours
that include vertices above and below, this is only due to the need
to approximate the true polyline curve that represents the contour
aty =y; (see Figure 7).

Frontiers ~ Ascending Paths. The analogy to ascending paths
here is the idea of a frontier. The frontier maps from each primitive
to the vertex that spawned the path to it. The purpose is, when a
topology change occurs, to know which source vertex to connect to
the generated vertex in the Reeb graph. It is important to note that
the frontier is simultaneously computing all ascending paths that
would be active at the current y level as it scans upwards. Contrast
this property to the computation of ascending paths, in which a
single path is computed at a time.

We continue “ascending paths” from the previous iteration by
comparing the previous frontier to the current frontier, and if a
topology change occurs, creating a vertex and terminating the cur-
rent path, or otherwise continuing the path upwards. To determine

whether there was a topological change, we need to compare the
components above and below the plane. We term the union-find
structures that represent these respective components as the (y+€)-
UF and the (y —¢)-UF.

Comparing Above To Below. We first consider the (y + €)-UF.
For each component ¢ of the (y+¢€)-UF, we find the components

{ci_ } that its members stem from by performing a find query on

the (y —¢&)-UF. If there are no components that ¢ stems from, then
¢ must be a local min, in which case we create a new vertex v and
map all members of ¢T to v in the frontier (see step (1) of Figure 8).
If there is only one component ¢~ that ¢ stems from, then there is
no topology change, and we map all members of ¢ in the current
frontier to the vertex ¢~ maps to in the previous frontier—that is,

we thread the mapping upwards (see steps (2), (3), (6), and (7) in
Figure 8). Otherwise, if there are multiple components {cl_ } that

¢ stems from, then we are at a join point. Here, we insert a vertex

into the graph, and for each component ¢~ in {cf }, we add an

edge from the vertex ¢~ maps to in the previous frontier to the new
vertex. Then, in the current frontier, we map all members to the
new vertex (see step (5) of Figure 8).

Comparing Below To Above. Now, we consider the (y — €)-UF.
For each component ¢~ of the (y — €)-UF, we find the components
{cl*} that its members go to by performing a find query on the (y+
€)-UF. If there are no components that ¢~ flows to, then ¢ must
be a local max, in which case we create a new vertex and create
an edge from the vertex mapped to by ¢~ in the previous frontier
to the new vertex (see step (8) of Figure 8). If there is only one
component ¢ that ¢~ flows to, then there is no topology change,
and we do nothing, as the analogous case when considering the
(y 4 €)-UF handles this situation. Otherwise, if there are multiple
components {cl+} that ¢~ flows to, then we are at a fork point.
Here, we insert a vertex into the graph and add an edge from the
vertex ¢ maps to in the previous frontier to the new vertex. Then,
for each component ¢ in {cl+ }, we map from ¢ to the new vertex
in the frontier (see step (4) of Figure 8).

Closing The Loop. At the end of each iteration, we set the previ-
ous frontier to the current frontier, then clear the current frontier.
After all iterations have finished, we will have our desired Reeb
graph.

Runtime. Let n be the number of primitives in the input expres-
sion. We have a loop over the critical areas of all primitives, each
of which has O(1) critical areas, so we have O(n) loop itera-
tions. Within each loop iteration, we generate collisions for all
primitives with the (y +¢€) and (y — €) plane, taking O(n) time.
Then we compute the connected components of each, taking time
O((3)) = O(n?), since there are (3) pairs of shapes to check inter-
sections for. Thereafter, we have two loops with similar runtimes.
In each loop, we iterate over each component, of which there are
O(n), and for each component, we find the components it stems
from or flows to, taking O(n) time. The rest of the operations within
the loop are dominated by this operation. Thus, the overall runtime
isO(n-(2-n+2-n*+2-n%) = 0.

L. Weber / Reeb Graphs on CSG

Algorithm 1 Construct Reeb Graph from CSG

Input: CSG expression e

primitives <— collect all primitives from e
critical areas <— collect and sort unique critical areas of all prim-
itives
€ < (minimum distance between adjacent critical areas) /2
previous frontier Fprey <— empty dictionary
result graph <— empty graph
for a; € critical areas do
yi < height(a;)
frontier F <— empty dictionary Step| Critical Point |Collisions Below/Above| Graph
P" « collisions of all primitives with plane y = y; + €
P~ < collisions of all primitives with plane y =y; — € ’
C™" <+ connected components of all collisions in P+ /
C™ < connected components of all collisions in P~ 3 g
for component c? €C" do
source components <— find components in C~ that ci+ 1
stems from
if |source components| = 0 then
v 4— create vertex in graph
else if |source components| = 1 then
V 4— Fprev[source component] 2
else
v <— create vertex in graph
for source component € source components do
Vi Fprev[source component]

(a) Model with torus topology (b) Critical areas of all primitives

i

add edge (v,v') to graph 3
end for _
end if) ’
for member m € c;r do \./
Flm] +v l
end for 4
end for

for component ¢;” € C~ do
target components < find components in C" that ¢
flows to
if |target components| = 0 then
v 4— create vertex in graph
add edge (Fprev[v],v)
else if |target components| > 1 then
v 4— create vertex in graph
add edge (Fprev[c;],v) to graph
for target component € target components do 6
F[target component] <— v
end for
end if
for member m € ¢;” do
Flm] +v
end for 7
end for
previous frontier <— frontier

T
end for ‘ /
Y

Figure 8: Execution of our algorithm on an example CSG model.
We sweep upwards, beginning from the lowest critical area. At each
critical area, we generate collisions below and above the critical
point. To determine whether a topological change has occurred, we
compare the components below and above the critical point.

6 o
N

6 o
N

6 o
N

L]
|
.

G
!

L. Weber / Reeb Graphs on CSG

5. Results

In this section, we compare the results of the ascending paths al-
gorithm and our CSG algorithm, both of which we implemented
in Julia. To this end, we crafted a set of CAD models compatible
with both (i.e., restricted to cubes and the union operation) that test
different cases of the CSG algorithm. To design these CAD mod-
els, we used OpenSCAD, a tool for programmatically constructing
CSG models.

To generate inputs for the ascending paths algorithm, we ex-
ported the models to .off files and loaded them into Julia via
MeshlO.jl. To generate inputs for our CSG algorithm, we tran-
scribed the abstract syntax trees manually from OpenSCAD to Ju-
lia.

The results of this process are shown in Figure 9. The initial goal
of these comparisons was to build confidence in the correctness of
our CSG algorithm, and indeed, on most of the models, the two
algorithms agree. However, there is one model in which the two
algorithms differed. In the last model in Figure 9, the ascending
paths algorithm produces more saddle point nodes (the blue nodes)
than the CSG algorithm. If we analyze the level sets of this model,
we find there are three components below the first pair of saddle
nodes and only one component above. A faithful encoding of this
topological change then is given by the CSG result, which has an
in-degree of 3 and an out-degree of 1. That is, the ascending paths
algorithm produces the incorrect result here!

Note that while the ascending paths algorithm returns the incor-
rect result in this case, the algorithm itself is not flawed, as it makes
no promises in this case. In particular, the algorithm presupposes
that each critical point has a distinct critical value. For the height
function, this means each critical point must exist at a distinct alti-
tude. Under this assumption, each node in the Reeb graph can have
a maximum in- and out-degree of 2.

6. Discussion

Proof of Correctness. The most obvious component missing from
the presentation of the CSG algorithm is a proof of correctness!
Unfortunately, the author did not provide himself ample time to ex-
plore this facet of the project in depth. The most interesting part
of the proof would likely be demonstrating that differences in con-
nected components at (y —€) and (y + €) implies a corresponding
change in topology.

Intrinsic vs. Extrinsic Functions. Focusing on Reeb graphs of
height functions makes sense from an algorithmic perspective, as it
lends itself to “sweep”-style algorithms. However, from a theoret-
ical perspective, the height function is less compelling, as it is de-
pendent upon the surface’s immersion into R3 (i.e., it is an extrinsic
function). There may be more interesting algorithmic opportunities
if we choose an intrinsic function (e.g., geodesic distance), though
the author has not considered this approach in depth.

Pruning Comparisons. There’s interesting future work in faster
computation of the connected components at each y-level. Cur-
rently, we check all (g) pairs of shapes for intersections, but since
we’re maintaining disjoint sets, there are likely some comparisons

Model Tri Mesh Result CSG Result

I

Y

A
i
A

!\

A

Figure 9: Collection of models and the corresponding Reeb graphs
produced by each of the algorithms we implemented.

Y
A
b
A
i

XEe%99 8%

we can prune at each step, which could drastically reduce the num-
ber of comparisons.

Incremental Computation. We are currently recomputing the in-
tersections with the plane at every critical area, but we have enough
information to compute the topology changes incrementally. For
example, at each critical area, we know not just that it is a crit-
ical area, but we know whether it is a minimum/maximum, and
we know which shape it belongs to. Thus, we could localize our
reasoning to the shape that corresponds to each event and deter-
mine whether it introduces a new component, removes a compo-
nent, splits a component, or joins a component. The most curious

https://openscad.org/
https://github.com/JuliaIO/MeshIO.jl

L. Weber / Reeb Graphs on CSG

of these events is splitting a component, because this operation is
unsupported in the classical union-find data structure, so we would
likely need to augment it. The original work of Shinagawa, Kunii,
and Kergosien [SKK91] use a tree-like data structure to encode the
events they consider, and the present author has yet to fully inves-
tigate whether their work would be applicable here. This type of
formulation falls more cleanly into the class of “sweeping” algo-
rithms, and would bring significant efficiency benefits.

7. Acknowledgements

The author wishes to thank David Palmer for his constructive feed-
back on initial iterations of this project.

References

[BB13] BARRA V., BIASOTTI S.: 3d shape retrieval using kernels on
extended reeb graphs. Pattern Recognit. 46 (2013), 2985-2999. 3

[BFL16] BAUER U., FABIO B. D., LANDI C.: An edit distance for reeb
graphs. In 3DOR@ Eurographics (2016). 3

[BFS00] BIASOTTI S., FALCIDIENO B., SPAGNUOLO M.: Extended
reeb graphs for surface understanding and description. In DGCI (2000).
2,3

[BGSF08] BIASOTTI S., GIORGI D., SPAGNUOLO M., FALCIDIENO
B.: Reeb graphs for shape analysis and applications. Theor. Comput.
Sci. 392 (2008), 5-22. 1,3

[BGW14] BAUER U., GE X., WANG Y.: Measuring distance between
reeb graphs. Proceedings of the thirtieth annual symposium on Compu-
tational geometry (2014). 3

[BLM20] BAUER U., LANDI C., MEMOLI F.: The reeb graph edit dis-
tance is universal. In Symposium on Computational Geometry (2020).
3

[BMSF06] BIASOTTI S., MARINI S., SPAGNUOLO M., FALCI-
DIENO B.: Sub-part correspondence by structural descriptors
of 3d shapes. Computer-Aided Design 38, 9 (2006), 1002-
1019. Shape Similarity Detection and Search for CAD/CAE
Applications. URL: https://www.sciencedirect.com/
science/article/pii/S0010448506001345, doi:https:
//doi.org/10.1016/j.cad.2006.07.003.3

[BMW15] BAUER U., MUNCH E., WANG Y.: Strong equivalence of
the interleaving and functional distortion metrics for reeb graphs. ArXiv
abs/1412.6646 (2015). 3

[BRS03] BESPALOV D., REGLI W. C., SHOKOUFANDEH A.: Reeb
graph based shape retrieval for cad. 1, 3

[DN09] DORAISWAMY H., NATARAJAN V.: Efficient algorithms for
computing reeb graphs. Comput. Geom. 42 (2009), 606-616. 3

[DN13] DORAISWAMY H., NATARAJAN V.: Computing reeb graphs as
a union of contour trees. IEEE Transactions on Visualization and Com-
puter Graphics 19 (2013), 249-262. 3

[FL16] FABIO B. D., LANDI C.: The edit distance for reeb graphs of
surfaces. Discrete & Computational Geometry 55 (2016), 423—461. 3

[HR20] HAI M., ROSEN P.: An efficient data retrieval parallel reeb
graph algorithm. ArXiv abs/1810.08310 (2020). 2, 3, 4

[HSKKO1] HILAGA M., SHINAGAWA Y., KOMURA T., KunNi T.:
Topology matching for fully automatic similarity estimation of 3d
shapes. Proceedings of the 28th annual conference on Computer graph-
ics and interactive techniques (2001). 1,2

[HWW10] HARVEY W., WANG Y., WENGER R.: A randomized o(m
log m) time algorithm for computing reeb graphs of arbitrary simplicial
complexes. Proceedings of the twenty-sixth annual symposium on Com-
putational geometry (2010). 3

[Munl7] MUNCH E.: A user’s guide to topological data analysis. Journal
of learning Analytics 4 (2017), 47-61. 1,3

[PCMO03] Pascucct V., COLE-MCLAUGHLIN K.: Parallel computation
of the topology of level sets. Algorithmica 38 (2003), 249-268. 3

[PSBMO07] Pascucct V., SCORZELLI G., BREMER P., MASCARENHAS
A.: Robust on-line computation of reeb graphs: simplicity and speed. In
SIGGRAPH 2007 (2007). 3

[Ree46] REEB G.: Sur les points singuliers d’une forme de pfaff com-
pletement intégrable ou d’une fonction numérique. C. R. Acad. Sci. Paris
222 (1946), 847-849. 1,2

[SKK91] SHINAGAWA Y., KUNII T., KERGOSIEN Y.: Surface coding
based on morse theory. IEEE Computer Graphics and Applications 11,
5(1991), 66-78. doi:10.1109/38.90568.1,2,3,8

[SMP16] SILVA V. D., MUNCH E., PATEL A.: Categorified reeb graphs.
Discrete & Computational Geometry 55 (2016), 854-906. 3

[TFL*18] TIERNY J., FAVELIER G., LEVINE J. A., GUEUNET C.,
MICHAUX M.: The topology toolkit. IEEE Transactions on Visual-
ization and Computer Graphics 24 (2018), 832-842. 3

https://www.sciencedirect.com/science/article/pii/S0010448506001345
https://www.sciencedirect.com/science/article/pii/S0010448506001345
http://dx.doi.org/https://doi.org/10.1016/j.cad.2006.07.003
http://dx.doi.org/https://doi.org/10.1016/j.cad.2006.07.003
http://dx.doi.org/10.1109/38.90568

