
Formal Verification of a Closest Pair Algorithm

MIT 6.850 Final Project

Logan Weber
loganweb@mit.edu

Contents

1 Introduction 1

2 Background 2
2.1 Closest Pair With Help . 2
2.2 Simplified Closest Pair With Help . 2
2.3 Notation . 3

3 Verification 5
3.1 General Strategy . 7
3.2 War Stories . 8

3.2.1 aux Finds the Closest Pair (in the Union of Balls) 8
3.2.2 Closest Pair In Ball Union Closer Than All Points Within Distance c 9
3.2.3 Bounded Norm ⇒ In `∞ Ball . 10

3.3 Admitted Lemmas . 11
3.4 Statistics . 11

4 Conclusion 12

1 Introduction

In the past few years, the Lean theorem prover and programming language has caught the attention
of the math community. For a long time, proof assistants were thought of as unsatisfactory for
formalizing undergraduate-level mathematics, let alone research-level mathematics. This image began
to change when a challenge by Fields Medalist, Peter Scholze, was proposed: The Liquid Tensor
Experiment. This challenge involved formalizing a foundational result in a new area of mathematics.
The Lean community took up the challenge, and within 6 months, had formalized the most import
aspects of the proof, exceeding Scholze’s expectations.

The rise of Lean cannot be explained by any significant technological innovation—it was a cultural
innovation. The most relevant comparison is to the Coq proof assistant, which has emphasized
sound, type-theoretic principles since its conception. Lean instead focuses on directly accomodating
the workflows of mathematicians, embracing language features that elude type-theoretic grounding
(e.g., quotients) and that destroy computational properties (e.g., the law of excluded middle).

Because of Lean’s focus on ergonomics, it has attracted a number of mathematicians, who have
formalized a substantial body of undergraduate-level mathematics in a library known as Mathlib.

Earlier this term, Professor Indyk mentioned the difficulties a past student had when verifying one
of the algorithms from lecture. In this project, our goal was to survey the state of formal verification
as it pertains to geometric computing. The question we seek to answer is: how much of the proof
burden does Mathlib alleviate in the process of formal verification?

1

https://xenaproject.wordpress.com/2020/12/05/liquid-tensor-experiment/
https://xenaproject.wordpress.com/2020/12/05/liquid-tensor-experiment/
https://leanprover-community.github.io

Concretely, we set out to implement and formally verify the closest pair (with help) and helper finder
algorithms. We did not make it to the helper finder algorithm, and our final achievements were 1:

• An implementation for a restricted form of the closest pair (with help) problem.

• A partial verification of the algorithm, with some low-level lemmas assumed to be true.

In the remainder of this report, we cover background for the closest pair with help problem (Section 2),
then we explain the process of verification (Section 3). Finally, in Section 4, we offer some concluding
thoughts.

2 Background

In this section, we recap the closest pair with help problem and the algorithm presented in class that
solves it (§ 2.1). Then, we cover simplifications and restrictions we imposed on the specification, to
make it amenable to formal verification (§ 2.2). Finally, we collect all notation used in this report
and motivate the nonstandard notation (§ 2.3).

2.1 Closest Pair With Help

Recall the problem specification for closest pair (with help) below.

Problem 1: Closest Pair With Help

Given a set of points P ⊆ Rd, find the closest pair

(p∗, q∗) = arg min
(p,q)∈P×P,p6=q

‖p− q‖2,

knowing ‖p∗ − q∗‖2 ∈ (t, ct].

The algorithm we saw in Lecture 11 to solve this problem is as follows.

Algorithm 1 Closest Pair With Help

g ← grid with side lengths k = 1/
√
d.

Insert each point p in the bucket in g with index bp/kc.
xy ← none
for p ∈ P do

for v ∈ [−dc+ 1e, dc+ 1e]d do
xy ← arg min{xy, arg minq∈g[bp+v/kc]{‖p− q‖}}

end for
end for
return xy

2.2 Simplified Closest Pair With Help

For the sake of both simplicity and computability, we impose the following restrictions on the speci-
fication in Section 2.1:

• The points have integral components. Lean does not include facilities for computing with
real numbers, though, in principle, it could—with all results computed up to finite precision.
Without such facilities, we are left with Q or Z as natural carrier types. We chose Z, believing
it would be simpler. In hindsight, using Q may have been just as easy and perhaps easier. Since
Q forms a field, it has multiplicative inverses, which simplifies algebra.

1 Code can be found at https://github.com/weberlo/verified-gridding.

2

https://github.com/weberlo/verified-gridding

• The points are in the plane. This assumption was for simplicity on the first pass through
the verification. It is unclear to the author how much more difficult the verification would be
in arbitrary dimensions.

• The norm is the squared Euclidean norm. We’re working with integers and the outermost
operation of ‖·‖2 is a square root, which could return a value outside of Z. Our fix is to consider
the squared Euclidean norm ‖ · ‖22.

• The points are scaled so t = 1. We assumed this property in class, but because we’re working
with integers, it’s a stronger assumption; scaling down could lose information and cause us to
return the wrong pair.

With these restrictions, the specification now looks like the following, with changes highlighted in
blue.

Problem 2: Closest Pair With Help (Restricted)

Given a set of points P ⊆ Z2, find the closest pair

(p∗, q∗) = arg min
(p,q)∈P×P,p6=q

‖p− q‖22,

knowing ‖p∗ − q∗‖22 ∈ (1, c].

Trivial Grids. A notable corollary of these restrictions is that the mapping from points to their
grid indices is the identity map. Recall, we wish to set the grid size k so the diameter of each cell is
< 1, guaranteeing at most one point per cell. We assume the bottom and left cell edges are inclusive
and the top and right edges are exclusive. Then, the furthest integer point from the bottom left (0, 0)
is at (k − 1, k − 1).

‖(k − 1, k − 1)‖22 < 1

2(k − 1)2 < 1

The only integral solution is 1, so each point’s grid index is itself.

Different Search Bounds. Knowing the closest pair distance is at most c, our norm gives us
bounds on how many cells away we must search. If ‖p∗ − q∗‖ ≤ c, then (p∗1 − q∗1)2 + (p∗2 − q∗2)2 ≤ c,
meaning (p∗1 − q∗1)2 ≤ c and (p∗2 − q∗2)2 ≤ c. Then for each component a of p and b of q, we have

(a− b)2 ≤ c

|a− b| ≤
√
c
N

where
√
n
N

is the largest number k such that k2 ≤ n. So if we search hypercubes of radius
√
c
N

+ 1,
we will certainly find the closest pair.

The Simplified Algorithm. With this simplified specification and the observations above, we
verify the following modified algorithm (again, with changes highlighted in blue).

2.3 Notation

Here, we explain any notation in Table 2.3 that was not explained in the previous subsections and
that will be useful in later sections.

3

Algorithm 2 Simplified Closest Pair With Help

g ← grid with side lengths k = 1.
Insert each point p in the bucket in g with index p.
xy ← none
for p ∈ P do

for v ∈ [−(
√
c
N

+ 1),
√
c
N

+ 1]2 do
xy ← arg min{xy, arg minq∈g[p+v]{‖p− q‖}}

end for
end for
return xy

Notation Description

P ⊆ Z2 list of input points to the algorithm
P ′ ⊆ P proposition that P ′ is a sublist of P

[] the empty list
p :: P ′ the list P ′ with p appended to the front

p, q, r, s, x, y, z, w ∈ P points in P
a, b ∈ Z integers

k,m, n ∈ N natural numbers
c ∈ N+ the distance hint

(P × P)? set of potentially null point pairs in P
xy, zw, rs ∈ (P × P)? potentially null pairs of points in P

some(x, y) ∈ (P × P)? definitely non-null pairs of points in P
none ∈ (P × P)? definitely null pairs of points in P

xy ≤ zw proposition that the nullable pair xy
is closer together than zw

CPP (x, y) (x, y) is the closest pair in P
B(p, c) set of points ∈ Z2 within distance c of the point p
BP (p, c) set of points ∈ P within distance c

of the point p (i.e., B(p, c) ∩ P)

C̃PP (xy) xy is the closest pair in
⋃

p∈P (p,BP (p, c)),

or none if there are no pairs in this set
Grid := (grid : Z2 ⇀ [Z2])× the type/fields of our grid structure

(P : [Z2])×
(c : N+)×

G(P, c) : Grid grid constructed from set of points P
and distance hint c

g : Grid arbitrary grid structure
g[p] points in cell at index p
‖ · ‖ the squared Euclidean norm
√
n
N

the natural number square root
bpc pointwise application of floor function to p

Figure 1: Summary of notation used throughout our report

Most of our notation is standard or self-explanatory, so we focus on motivating the outliers.

Potentially null point pairs. Because the algorithm searches for pairs within balls around points,
we must account for the case where there are no such pairs. We handle this outcome by lifting the
type of point pairs (P×P) to the type (P×P)? of possibly null point pairs. This type has inhabitants
of the form none, expressing a null pair, and some(x, y), expressing a non-null pair. When we have a
term of type (P × P)?, and we don’t yet know whether it’s null, we write it as xy.

4

Ordering on potentially null point pairs. In the algorithm, we frequently compare a single
ball’s closest pair to the closest pair from a lower recursion level. Both of these results could be null,
so we must case on whether zero, one, or both are null and choose the “closest” result accordingly.

Instead of littering our code with casework on nullable pairs, we impose an order xy ≤ zw on (P×P)?,
with none representing a pair that is infinitely distant. Our order satisfies the following rules:

none ≤ none

none 6≤ some(z, w)

some(x, y) ≤ none

(some(x, y) ≤ some(z, w))⇔ (‖x− y‖ ≤ ‖z − w‖)

Ball of points in P . Conceptually, our algorithm draws balls around points in P and finds other
points in P lying within those balls. To express this concept in our proofs, we augment standard
B(p, c) notation to BP (p, c) := B(p, c) ∩ P , which includes all points in P lying within B(p, c).

Closest pair in union of balls. As we will see in Section 3.2.1, directly proving the (x, y) returned
by our algorithm is the closest pair (i.e., CPP (x, y)) doesn’t work. Instead, we define a predicate

C̃PP (xy), expressing that xy is the closest pair among all pairs in balls we draw around points in P .
Then, we prove our algorithm satisfies this predicate.

Grid construction. We require a few lemmas expressing properties about the grid structure, so
we notate it as a tuple G(P, c) with fields

• (grid : Z2 ⇀ [Z2]): the hash table mapping grid indices to cells containing lists of points.

• (P : [Z2]): the set of points used to generate the grid. We need to carry this data around to
express relations between the set of input points and the grid we create.

• (c : N+): the distance hint. We include this for similar reasons to why we include P .

When we don’t have access to the parameters a grid was constructed with, we notate it as g.

3 Verification

We omit any detailed explanation of our implementation, since that was not the difficult part. How-
ever, since it will be necessary to refer to the functions we prove properties of, we summarize our
implementation in Table 3.

The goal of our verification is to prove the following theorem.

Theorem 1: find closest pair Finds Closest Pair

If the closest pair is within distance (1, c], find closest pair finds (x, y) such that CPP (x, y).

Figure 2 gives an overview of our proof, highlighting the results of interest and capturing the depen-
dencies between lemmas.

5

Function Name Signature Description

find closest pair (c : N+)→ (P : [Z2])→ (P × P)? The entry point to our algo-
rithm. Constructs the grid, then
calls aux. If the result is further
than distance c, returns none.

aux (g : Grid)→ (P : [Z2])→ (P × P)? The core subroutine of the algo-
rithm. Recurses over P , using
mdp with at each point p to find
points in BP (p, c).

grid points (P : [Z2])→ (c : N+)→ Grid Creates the grid structure,
inserting points according to
get grid idx.

get grid idx (p : Z2)→ Z2 Converts a point to its grid index
(the identity mapping under the
current set of restrictions).

min dist pair aux (p : Z2)→ (Q : [Z2])→ (P × P)? Given p and a list of points in a
ball around it, returns the closest
point to p.

min dist pair (p : Z2)→ (g : Grid)→ (P × P)? Collects points around p
via get neighbs, then uses
min dist pair to find the
closest among them.

get hypercube (n : N)→ [Z2] Given a radius n, returns the set
of grid cell indices that intersect
a hypercube of radius n.

get idxs (p : Z2)→ (c : N+)→ [Z2] Returns a list of indices in a hy-

percube of radius
√
c
N

+1 around
p, making use of get hypercube.

lift option list ∀(α : Type). [α]? → [α] Converts all none lists into empty
lists.

get neighbs (p : Z2)→ (g : Grid)→ [Z2] Uses get idxs to collect indices
around p, then fetches cells at
those indices from g, excludes p
from the result, then returns.

6

THEOREM 1
find_closest_pair finds

the closest pair if the
distance hint is correct.

G(P, c) . c = c

G(P, c) . P = P

LEMMA 2
aux finds such that

.
xy C̃PP(xy)
(§3.2.1)

LEMMA 3
If , and the

closest pair is within distance
, then is the closest pair

in .

C̃PP(!"#$(x, y))
c (x, y)

P (§3.2.1)

If and
, then

x ≤ y
y ≤ z

x ≤ z

¬(x ≤ y ∧ y < x)

Coercing to
 then to is

equivalent to a
direct

conversion to .

ℕ+
ℕ ℤ

ℤ

LEMMA 1
aux finds the closest pair

if the distance hint is
correct .(§3.2.1)

LEMMA 4
For all points

within distance , if ,
then .

(p, q) ∈ P
c C̃PP(xy)

xy ≤ !"#$(p, q) (§3.2.2)

(xy ≤ !"#$(z, w)) ⇒ xy = !"#$(x, y)

If ,
then and

C̃PP(!"#$(x, y))
x, y ∈ P x ≠ y

a :: l′ ⊆ l ⇔ a ∈ l ∧ l′ ⊆ l

If and
, then

xy < zw
zw ≤ rs

xy < rs

min_dist_pair
finds the closest pair

in BP(p, c)

If and ,
then

xy ≤ zw zw < rs
xy < rs

, considered as
a proposition, holds

exactly when the
procedure of

checking
returns

xy ≤ zw

xy ≤ zw
/01$

If
returns a pair, one of the

points will be .

min_dist_pair(p, g)
p

If and
,

then

y ∈ BP(p, c)
!"#$(p, x) ≤ !"#$(p, y)

x ∈ BP(p, c)

If and
, then

C̃PP(zw)
xy ≤ zw C̃PP(xy)

aux applied to a
larger point list

returns a closer point

If for
some , then

q ∈ BP′
(p, c)

P′ ⊆ P
q ∈ BP(p, c)

∥p − q∥ = ∥q − p∥

If we lift the procedure
of checking to
a proposition, it holds

exactly when the
proposition

holds.

xy ≤ zw

xy ≤ zw

If and ,
then

xy ≤ zw zw ≤ rs
xy ≤ rsIf

returns a pair, it is in
min_dist_pair(p, g)

BP(p, c)

min_dist_pair_aux
returns the point in the
input list that is closest

to p

If , then x ∈ BP(p, c)
x ∈ get_neighbs(p, G(c, P))

If is in a list of
nullable lists, then if
we convert all null

lists to empty lists, is
in the converted list.

!"#$(l)

l

If the grid index of is
in ,
then retrieving the
elements at these

indices will yield a list
which is contained in

x
get_idxs(p, c)

x

If is in some list in a
list of lists, then x is
in the concatenation

of the list of lists.

x

If , then
the grid index of is
in

q ∈ BP(p, c)
q

get_idxs(p, c)

If , there
is some ,

with , such
that

q ∈ BP(p, c)
(a, b) ∈ ℤ2

∥(a, b)∥ ≤ c
p + (a, b) = c

LEMMA 5
If , then

.

∥(a, b)∥ ≤ c

(a, b) ∈ Bℓ∞ (⃗0 , c
ℕ + 1) ∩ ℤ2

(§3.2.3)

If and
, then

−n ≤ i ≤ n
−n ≤ j ≤ n
(i, j) ∈ Bℓ∞(⃗0 , n)

∥(a, b)∥ ≤ c ⇒ (a2 ≤ c) ∧ (b2 ≤ c)

a + b = b + a

If , , and
, then

a ≤ 0 b ≤ 0
a < b b2 < a2

n ≥ 0

n ≥ 0 ⇒ − n ≤ 0

↑ℤ(n) ≥ 0

a < b ⇒ a ≤ b

(−a)2 = a2

(c
ℤ + 1)

2
> c

If and
, then

x < y
y < z

x < z

If , then m < n
↑ℤ(m) < ↑ℤ(n)

If , , and
, then

a ≥ 0 b ≥ 0
a < b a2 < b2

If , then m ≥ n
↑ℤ(m) ≥ ↑ℤ(n)

↑ℕ(n) = n

xy < zw ⇒ xy ≤ zw

Figure 2: Graph capturing the dependency of each lemma/theorem on other lemmas. An edge exists
from a to b when a is used by b (e.g., a lemma with high in-degree uses many lemmas). A dashed
border means the lemma has not been proven. A bold border means the lemma is important/inter-
esting/difficult; we cover some of them in Section 3.2.

3.1 General Strategy

Starting with Theorem 1, our general approach was:

1. Work through the proof.

2. Each time it seems you need a lemma pertaining to another function, create an empty definition
for that lemma, assuming it to be true. The lemma can now be used in the main proof.

3. When the proof is finished, choose one of the posited lemmas and repeat this process.

This kind of top-down strategy is uniquely attuned to the realm of proofs, because we only care
about whether a lemma is true—not how it’s true. In programming, one can stub out methods, but
ultimately, to test the program, method stubs need bodies.

7

3.2 War Stories

In this section, we cover proofs which were either conceptually interesting or highlight some of the
difficulties of working with Lean.

3.2.1 aux Finds the Closest Pair (in the Union of Balls)

As mentioned in Section ??, aux is a recursive function that performs the core iteration over the list
of points P—find closest pair simply creates the grid and filters the result of aux if it’s not within
distance c. Thus, the most important property to prove is that aux finds the closest pair, given that
the distance hint holds true.

Lemma 1: aux Finds Closest Pair

If the closest pair is within distance (1, c], aux finds (x, y) such that CPP (x, y).

When you prove facts about a recursive function, you often prove them by induction. If we want to
prove our algorithm finds the closest pair, a naive induction on P would have us prove the following
in the induction step:

Suppose we know the recursive subcall on the sublist P ′ gives us the closest pair in P ′.
Then the current call gives us the closest pair for the larger list P = p :: P ′.

But the antecedent doesn’t hold for our algorithm. In particular, the closest pair might contain points
we haven’t recursed over yet. We can see the issue in step 3 of Figure 3 (right). The closest pair
at this step includes a point outside the list of processed points, identifying a case where the naive
invariant fails.

Figure 3: Depiction of the pairs satisfying the inductive hypothesis at each step of the algorithm, for
both the naive and correct invariants. Black dots represent points in P ′ ⊆ P that have been processed
and gray dots represent unprocessed points in P . (Left) Pairs satisfying the naive induction invariant,
expressing that the algorithm maintains the closest pair in P ′. (Right) Pairs satisfying the correct
induction invariant, expressing that the algorithm maintains the closest pair in

⋃
p∈P ′ BP (p, c).

We need a proof goal that provides us with a different, stronger induction hypothesis. Our algorithm,
conceptually speaking, draws balls around each point and finds the closest pair among all balls seen
so far. To capture this process in a predicate, we create a recursively defined predicate C̃PP (xy)
satisfying the following rules:

8

• No points: C̃PP (none, [])

• Recursive point closer: If C̃PP (xy, P ′) and xy is closer than all points in BP (p, c), then

C̃PP (xy, p :: P ′).

• Current point closer: If C̃PP (xy, P ′), but there is a point q ∈ BP (p, c) closer to p than any

other point in BP (p, c), and (p, q) is closer than xy, then C̃PP (some(p, q), p :: P ′).

Now, instead of proving aux finds (x, y) such that CPP (x, y), we prove the following.

Lemma 2: aux Finds Closest Pair in Ball Union

aux finds (x, y) such that C̃PP (some(x, y)).

This lemma provides the correct induction hypothesis, allowing the proof to go through.

With Lemma 2 proven, we still need to prove Lemma 1. To do so, we prove the lemma below, which
combines Lemma 2 with the distance hint. For brevity, we omit discussion of the proof, though we
discuss one of the lemmas it relies on in Section 3.2.2.

Lemma 3: (C̃PP and Distance Hint) ⇒ CPP

aux finds (x, y) such that C̃PP (some(x, y)).

3.2.2 Closest Pair In Ball Union Closer Than All Points Within Distance c

In proving Lemma 3, we require the following lemma.

Lemma 4: C̃PP Flattening

If C̃PP (some(x, y)) and q ∈
⋃

p∈P BP (p, c), then (x, y) is closer than (p, q).

After staring for a bit, you might think this lemma should hold trivially2. After all, isn’t this exactly
what C̃PP is meant to express? Indeed it is, but the proof of this fact is not automatic. The reason
is that C̃PP is more specific than the simpler statement of being the closest pair in

⋃
p∈P BP (p, c),

because it enforces a particular process by which the closest pair was arrived at. This process is
recursive, so to arrive at the “flattened” proposition above, we need to “unroll” it via induction. But
induction on what?

We may wish to induct on the list of points P , but this causes an issue in the case where the
current point is closer (see 3.2.1). Since we’re inducting on P , all other variables remain fixed in the
induction hypothesis. So if we’re trying to prove that (x, y) is closer than (p, q) and we want to apply

the induction hypothesis, we need to provide a proof that (x, y) satisfies C̃PP ′(some(x, y)). However,
in the case where the current point is closer, we have that some other point pair xy′ was the closest
pair in the ball union for the sublist P ′. Thus, we only have C̃PP ′(xy′), and we are unable to apply
the IH.

The issue is that inducting on P leaves (x, y) fixed and does not account for the fact that the closest
pair changes as we recurse. What else can we induct on then? Well, induction can be performed on
any type satisfying certain conditions3, and it so happens that our recursive predicate C̃P satisfies
them. This induction target solves our problem because the inductive hypothesis changes depending
on whether we are in the case where the recursive result remains the closest or a pair in the current
point’s ball is closer.

There are two takeaways from this proof:

2 The reader may be thinking this of many results in this report... and they are not alone. Such is life in formal
verification, it seems.

3In particular, we must be able to impose a well-founded order upon it.

9

• In verification, you often define predicates that are aligned with the recursion structure of an
algorithm, for the reasons outlined in Section 3.2.1. However, this often leads to an abstraction
mismatch, because these predicates don’t directly encode high-level mathematical properties.
Thus, it is common to prove lemmas that lift these low-level predicates to intuitive statements
you can work with in other proofs.

• Induction on recursively defined predicates can yield stronger induction hypotheses or, at least,
hypotheses that are more closely aligned with the proof goal.

3.2.3 Bounded Norm ⇒ In `∞ Ball

On the path to proving Lemma 2, we need lemmas showing that we check the correct grid indices. The
lemma below says that if the distance between two points is bounded, then checking in a hypercube
of a certain radius around one of them suffices to find one of the points.

Lemma 5: Hypercube Containment for Bounded Norm

If ‖(a, b)‖ ≤ c, then (a, b) ∈ get hypercube(
√
c
N

+ 1).

There’s nothing conceptually tricky about this lemma. However, the approach that felt natural made
it an absolute pain to prove in Lean.

We first broke down the proof goal with a lemma showing it suffices to prove

− ↑Z(
√
c
N

+ 1) ≤ a, b ≤↑Z(
√
c
N

+ 1).

Recall, ↑Z(n) represents a coercion of n ∈ N into an integer. This coercion is a trivial inclusion, but
even so, it obstructed the application of lemmas, because Lean doesn’t know which properties the
coercions preserve.

To get around these obstructions, we separately proved that relations like <,≤, >, and ≥ were
preserved by coercion, applied those lemmas, then applied the previously obstructed lemma. The
proofs of preservation were trivial, but requiring the separate proofs still added friction to the process.

We now focus on proving only − ↑Z (
√
c
N

+ 1) ≤ a. The other cases are similar. We proceed by

contradiction, giving us the hypothesis that ¬(− ↑Z(
√
c
N

+ 1) ≤ a). To get this into the more useful

form a < − ↑Z(
√
c
N

+ 1) required 4 lines of code.

We then used lemmas to establish the following facts, with later facts potentially depending on earlier
ones:

• a2 ≤ c and b2 ≤ c

•
√
c
N

+ 1 ≥ 0

• −(↑Z(↑N(
√
c
N
) + 1) ≤ 0

• a ≤ −(
√
c
N

+ 1)

• −(↑N(
√
c
N

) + 1) · −(↑N(
√
c
N

) + 1) < a2

• (−a)2 = a2

• (
√
c
N

+ 1)2 > c

• ↑Z(
√
c
N
) < a2

With the final fact, we were able to prove a contradiction by using the lemma ¬(x ≤ y ∧ y < x)

applied to a2 ≤ c and ↑Z(
√
c
N

) < a2.

Recall, we have only proven a portion of the original proof goal, and we stated the other three
cases were similar. To prove the other cases, we copied the first case three times and made slight
modifications. We did not sink much time into it, but in the time we did spend, it was nonobvious
how to do anything better.

10

We have no doubts there are tactics that could make the proof above less painful. The takeaway from
this story is that a clean proof did not seem attainable from basic usage of Lean.

Potential Improvements. There exists a wlog tactic that captures the informal concept of WLOG
often used in proofs, by considering permutations of variables in the proof goal. This tactic could
potentially reduce the code duplication across the four cases.

There exists a calc mode that is able to perform chains of inequality reasoning, which could dramat-
ically condense the proof of Lemma 5. However, we were unable to get it to work in the simple cases
we tried.

3.3 Admitted Lemmas

Almost all of the lemmas we did not prove were unique to the machinery we set up for the closest
pair algorithm. Most of the admitted lemmas were simply due to time constraints. Below, we discuss
a few notable classes of admitted lemmas.

Comparisons In (P × P)?. In defining the comparison predicates xy ≤ zw and xy < zw between
pairs of points, we did not automatically gain access to lemmas on linear orders. We believe if we
proved that it forms a linear order, then we would gain access to a number of theorems in Mathlib
that would be helpful in some of the admitted proofs.

Norm. We can’t directly leverage the infrastructure and theorems surrounding normed spaces,
because the norm typeclass requires a codomain of R, destroying computability properties.

In principle, a norm instance could be provided whereby the output would be lifted from Z to R.
Then, perhaps we could transport theorems from normed spaces. This might work, but it could also
introduce a lot of overhead, where we intersperse coercions between Z and R throughout our proofs.

3.4 Statistics

In this section, we compare lines of code in our implementation (Table 4) to lines of code in our
verification (Table 5).

Function Name Lines of Code

find closest pair 11
aux 7

grid points 12
get grid idx 2

min dist pair aux 5
min dist pair 3
get hypercube 6

get idxs 5
lift option list 3

get neighbs 6
xy ≤ zw 7

Total 67

Figure 4: Breakdown of lines of code for each function in our implementation.

11

Theorem/Lemma Lines of Code

Theorem 1 81
Lemma 1 13
Lemma 2 199
Lemma 3 66
Lemma 4 71
Lemma 5 257

Other 446

Total 1,133

Figure 5: Breakdown of lines of code for the main results in our verification and a summary of other
smaller results.

We have a startling 17× blowup in the size of our verification, relative to our implementation! Some
of this blowup could be due to my being an experienced functional programmer but a novice in
formal verification. As noted earlier, there are facilities in Lean that I am aware of and that could
have drastically reduced the size of certain proofs, but I did not have time to investigate them.

4 Conclusion

While the existence of Mathlib alleviates the burden of proving basic facts about mathematical
objects, the constructions necessary to prove correctness of algorithms are often as complex or more
than constructions in mathematics, and they are far more bespoke. With all the diversity in algorithms
across computer science, formal verification of a particular implementation of a particular algorithm
is a tough sell.

We are led to the conclusion that, until a breakthrough in proof automation is achieved or we discover
new abstractions for mathematical construction of software, the average computational geometer, and
the average programmer, can continue to disregard formal verification. Despite my lack of expertise
in formal verification, the broad strokes of the picture are clear: the level of formality that verification
entails leads to reasoning far below the level of abstraction computer scientists care to think at.

12

	Introduction
	Background
	Closest Pair With Help
	Simplified Closest Pair With Help
	Notation

	Verification
	General Strategy
	War Stories
	aux Finds the Closest Pair (in the Union of Balls)
	Closest Pair In Ball Union Closer Than All Points Within Distance c
	Bounded Norm In Ball

	Admitted Lemmas
	Statistics

	Conclusion

