
A Theory of Equivalence-Preserving Program Embeddings
Logan Weber*, Jesse Michel*, Alex Renda, Saman Amarasinghe, Michael Carbin

We characterize when it is tractable to embed a programming language such that semantic equivalence is preserved.

Discussion

Theoretical Results

*Denotes equal contribution.

Empirical Study

Equivalence-Preserving Program Embeddings

Abstract
Program embeddings are increasingly used to solve program reasoning tasks. For tasks
where only program semantics is relevant, solutions should not differ for semantically
identical programs. When a technique can produce program embeddings satisfying this
property, we say it preserves equivalences. We say a programming language can be
tractably embedded when sufficiently small equivalence-preserving embeddings can be
produced in polynomial time, and we theoretically characterize when this is achievable. To
validate our theoretical results, we use a BERT-Tiny model to solve a semantic labeling task
and find it can learn to produce equivalence-preserving embeddings for a language that can
be tractably embedded, and we find it fails to produce equivalence-preserving embeddings
for a larger language that cannot be tractably embedded.

 relevant to tasks that entail reasoning about program semantics. We

Semantic Tasks
Semantic tasks are tasks where only the input-output behavior of a
program is relevant.

Code Clone Detection Semantic LabelingThe goal of code semantic labeling is to
classify a given program into a fixed
collection of program behaviors. To
solve semantic labeling, program
embedding techniques produce
embeddings for which a mapping from
embedding to label is learned.

The goal of code clone detection is to
find semantically identical programs to a
given program. To solve code clone
detection, program embedding
techniques produce embeddings that
are then compared with other
embeddings to determine semantic
equivalence.

The goal of superoptimization is to produce the optimal
semantically equivalent form of a given program. To aid in
solving superoptimization, program embedding techniques
produce embeddings used for hashing, with the goal of
minimizing collisions between semantically distinct programs.

Embeddings that are identical exactly when
programs are semantically equivalent perfectly
solve the above tasks. We call such embeddings
equivalence-preserving embeddings.

By probing programs with an increasing number of inputs, one can
determine the complexity of a programming language’s semantics, and
consequently the necessary runtime to embed the language.

We show that the problem of constructing equivalence-preserving
embeddings for a programming language is tractable exactly when the
number of semantically distinct programs is polynomial in the number of
probing inputs and the language can be efficiently canonicalized.

We consider a language of modular addition and a larger language that
includes bitwise logic operators. We prove the smaller language tractable
and the larger language intractable and show a BERT-Tiny’s ability to
learn equivalence-preserving embeddings for the intractable language
degrades significantly faster.

Our results show even subsets of basic-block assembly cannot be tractably embedded,
suggesting approximation is necessary to scale to full-fledged programming languages.
For future work, we consider identifying tractable subsets of languages, approximating
the semantics of languages, and loosening the specification of equivalence-preserving
embeddings to incorporate semantic similarity.

Superoptimization

By probing programs with an
increasing number of inputs, one
can determine the complexity of a
language’s semantics.

We show that constructing equivalence-preserving embeddings for a
programming language is tractable exactly when the number of semantically
distinct programs is polynomial in the number of probing inputs and the
language can be efficiently canonicalized.

We consider a modular addition language and a larger language with bitwise
operators. We prove the former can be tractably embedded while the latter
cannot be, then we show BERT-Tiny’s ability to learn
equivalence-preserving embeddings for the intractable language degrades
significantly faster than for the tractable language.

Embeddings that are identical exactly when programs are
semantically equivalent perfectly solve the above tasks. We call such
embeddings equivalence-preserving embeddings.

Program embeddings are
increasingly used to solve
program reasoning tasks. We
develop a theory of program
embeddings for solving tasks
that require reasoning about
program semantics.

Program embeddings are
increasingly used to solve program
reasoning tasks. We develop a
theory of program embeddings for
solving tasks that require reasoning
about program semantics. We
compare two languages
theoretically, then show
BERT-Tiny’s performance on each
language accords with our theory.

We compare two languages theoretically, then show BERT-Tiny’s
performance on each language accords with our theory.

Our results show subsets of basic-block
assembly cannot be tractably embedded,
suggesting approximation is necessary in
practice. For future work, we consider
identifying tractable subsets of languages,
approximating the semantics of languages,
and relaxations using semantic similarity.

In code clone detection, the goal is to find duplicates of a given
program in a codebase. In semantic labeling, the goal is to identify the
semantic behavior a program exhibits from a fixed collection of possible
behaviors. In superoptimization, the goal is to produce a semantically
equivalent program that is optimal with respect to some metric.

